scholarly journals Renal Protective Effects of Resveratrol

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Munehiro Kitada ◽  
Daisuke Koya

Resveratrol (3,5,4′-trihydroxystilbene), a natural polyphenolic compound found in grapes and red wine, is reported to have beneficial effects on cardiovascular diseases, including renal diseases. These beneficial effects are thought to be due to this compound’s antioxidative properties: resveratrol is known to be a robust scavenger of reactive oxygen species (ROS). In addition to scavenging ROS, resveratrol may have numerous protective effects against age-related disorders, including renal diseases, through the activation of SIRT1. SIRT1, an NAD+-dependent deacetylase, was identified as one of the molecules through which calorie restriction extends the lifespan or delays age-related diseases, and this protein may regulate multiple cellular functions, including apoptosis, mitochondrial biogenesis, inflammation, glucose/lipid metabolism, autophagy, and adaptations to cellular stress, through the deacetylation of target proteins. Previous reports have shown that resveratrol can ameliorate several types of renal injury, such as diabetic nephropathy, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and unilateral ureteral obstruction, in animal models through its antioxidant effect or SIRT1 activation. Therefore, resveratrol may be a useful supplemental treatment for preventing renal injury.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bing Shen ◽  
Jun Liu ◽  
Fang Zhang ◽  
Yong Wang ◽  
Yan Qin ◽  
...  

Mesenchymal stem cells (MSCs) derived exosomes have been shown to have protective effects on the kidney in ischemia/reperfusion-induced renal injury. However, the key components in the exosomes and their potential mechanisms for the kidney protective effects are not well understood. In our current study, we focused on the abundant proteins in exosomes derived from MSCs (MSC-exo) and found that the C-C motif chemokine receptor-2 (CCR2) was expressed on MSC-exo with a high ability to bind to its ligand CCL2. We also proved that CCR2 high-expressed MSC-exo could reduce the concentration of free CCL2 and suppress its functions to recruit or activate macrophage. Further, knockdown of CCR2 expression on the MSC-exo greatly abolished these effects. Finally, we also found that CCR2 knockdown impaired the protective effects of MSC-exo for the renal ischemia/reperfusion injury in mouse. The results indicate that CCR2 expressed on MSC-exo may play a key role in inflammation regulation and renal injury repair by acting as a decoy to suppress CCL2 activity. Our study may cast new light on understanding the functions of the MSC-exo and these receptor proteins expressed on exosomes.


2006 ◽  
Vol 290 (4) ◽  
pp. F779-F786 ◽  
Author(s):  
Mahesh Basireddy ◽  
T. Scott Isbell ◽  
Xinjun Teng ◽  
Rakesh P. Patel ◽  
Anupam Agarwal

Reactive oxygen and nitrogen species play a key role in the pathophysiology of renal ischemia-reperfusion (I/R) injury. Recent studies have shown that nitrite (NO2−) serves as an endogenous source of nitric oxide (NO), particularly in the presence of hypoxia and acidosis. Nanomolar concentrations of NO2− reduce injury following I/R in the liver and heart in vivo. The purpose of this study was to evaluate the role of NO2− in renal I/R injury. Male Sprague-Dawley rats underwent a unilateral nephrectomy followed by 45 min of ischemia of the contralateral kidney or sham surgery under isoflurane anesthesia. Animals received normal saline, sodium NO2−, or sodium nitrate (NO3−; 1.2 nmol/g body wt ip) at 22.5 min after induction of ischemia or 15 min before ischemia. A separate set of animals received saline, NO2−, or NO3− (0.12, 1.2, or 12 nmol/g body wt iv) 45 min before ischemia. Serum creatinine and blood urea nitrogen were increased following I/R injury but were not significantly different among treatment groups at 24 and 48 h after acute renal injury. Interestingly, NO3− administration appeared to worsen renal injury. Histological scoring for loss of brush border, tubular necrosis, and red blood cell extravasation showed no significant differences among the treatment groups. The results indicate that, contrary to the protective effects of NO2− in I/R injury of the liver and heart, NO2− does not provide protection in renal I/R injury and suggest a unique metabolism of NO2− in the kidney.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Daniela Gradinaru ◽  
Anca Ungurianu ◽  
Denisa Margina ◽  
Maria Moreno-Villanueva ◽  
Alexander Bürkle

Since its discovery in 1905 and its employment in everyday medical practice as a local anesthetic, to its highly controversial endorsement as an “anti-aging” molecule in the sixties and seventies, procaine is part of the history of medicine and gerontoprophylaxis. Procaine can be considered a “veteran” drug due to its long-time use in clinical practice, but is also a molecule which continues to incite interest, revealing new biological and pharmacological effects within novel experimental approaches. Therefore, this review is aimed at exploring and systematizing recent data on the biochemical, cellular, and molecular mechanisms involved in the antioxidant and potential geroprotective effects of procaine, focusing on the following aspects: (1) the research state-of-the-art, through an objective examination of scientific literature within the last 30 years, describing the positive, as well as the negative reports; (2) the experimental data supporting the beneficial effects of procaine in preventing or alleviating age-related pathology; and (3) the multifactorial pathways procaine impacts oxidative stress, inflammation, atherogenesis, cerebral age-related pathology, DNA damage, and methylation. According to reviewed data, procaine displayed antioxidant and cytoprotective actions in experimental models of myocardial ischemia/reperfusion injury, lipoprotein oxidation, endothelial-dependent vasorelaxation, inflammation, sepsis, intoxication, ionizing irradiation, cancer, and neurodegeneration. This analysis painted a complex pharmacological profile of procaine: a molecule that has not yet fully expressed its therapeutic potential in the treatment and prevention of aging-associated diseases. The numerous recent reports found demonstrate the rising interest in researching the multiple actions of procaine regulating key processes involved in cellular senescence. Its beneficial effects on cell/tissue functions and metabolism could designate procaine as a valuable candidate for the well-established Geroprotectors database.


2020 ◽  
Vol 319 (6) ◽  
pp. F1054-F1066
Author(s):  
Hye Jung Kim ◽  
Sun-Hee Kim ◽  
Minjung Kim ◽  
HyungJoo Baik ◽  
Seok Ju Park ◽  
...  

In the present study, we demonstrated the marked activity of SW033291, an inhibitor of 15-hydoxyprostaglandin dehydrogenase (15-PGDH), in preventing acute kidney injury (AKI) in a murine model of ischemia-reperfusion injury. AKI due to ischemic injury represents a significant clinical problem. PGE2 is vasodilatory in the kidney, but it is rapidly degraded in vivo due to catabolism by 15-PGDH. We investigated the potential of SW033291, a potent and specific 15-PGDH inhibitor, as prophylactic treatment for ischemic AKI. Prophylactic administration of SW033291 significantly increased renal tissue PGE2 levels and increased post-AKI renal blood flow and renal arteriole area. In parallel, prophylactic SW033291 decreased post-AKI renal morphology injury scores and tubular apoptosis and markedly reduced biomarkers of renal injury that included blood urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Prophylactic SW033291 also reduced post-AKI induction of proinflammatory cytokines, high-mobility group box 1, and malondialdehyde. Protective effects of SW033291 were mediated by PGE2 signaling, as they could be blocked by pharmacological inhibition of PGE2 synthesis. Consistent with activation of PGE2 signaling, SW033291 induced renal levels of both EP4 receptors and cAMP, along with other vasodilatory effectors, including AMP, adenosine, and the adenosine A2A receptor. The protective effects of SW0333291 could largely be achieved with a single prophylactic dose of the drug. Inhibition of 15-PGDH may thus represent a novel strategy for prophylaxis of ischemic AKI in multiple clinical settings, including renal transplantation and cardiovascular surgery.


2021 ◽  
Vol 22 (23) ◽  
pp. 13155
Author(s):  
Małgorzata Krzystek-Korpacka ◽  
Mariusz G. Fleszar ◽  
Paulina Fortuna ◽  
Kinga Gostomska-Pampuch ◽  
Łukasz Lewandowski ◽  
...  

Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Dai ◽  
Deqiong Xie ◽  
Chenli Zhang ◽  
Lei Zhu ◽  
Ying Xu ◽  
...  

Renal ischemia-reperfusion (IR) is one of the main causes of renal injury. In severe cases with serious consequences, IR-related renal damage progresses rapidly and can even lead to acute renal failure. Its clinical treatment is currently difficult. According to various studies at home and abroad, HMGB1 is released from the nucleus into the cytoplasm or extracellular space by damaged parenchymal cells during ischemia and hypoxia, and this plays an important role in the initiation of reperfusion injury as an early inflammatory factor and is closely related to the occurrence and development of renal diseases. In recent years, the protective effect of osthole on IR of tissues and organs has been a key topic among clinical researchers. Osthole can inhibit the inflammatory response, reduce cell apoptosis the progression, and improve the prognosis of IR, thus protecting the kidney. During the development of renal IR, finding a mechanism through which the osthole blocks the release of HMGB1 from the nucleus would be helpful in detecting targets for clinical treatment.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1390
Author(s):  
Kristína Ferenczyová ◽  
Lucia Kindernay ◽  
Jana Vlkovičová ◽  
Barbora Kaločayová ◽  
Tomáš Rajtík ◽  
...  

Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (−)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy. Moreover, regulatory roles of several microRNAs, including miR-145, miR-384-5p, miR-30a, miR-92a, as well as lncRNA MIAT, were documented in effects of catechins in cardiac I/R. On the other hand, the majority of results come from cell-based experiments and healthy small animals, while studies in large animals and studies including comorbidities or co-medications are rare. Human studies are lacking completely. The dosages of compounds also vary in a broad scale, thus, pharmacological aspects of catechins usage in cardiac I/R are inconclusive so far. Therefore, the aim of this focused review is to summarize the most recent knowledge on the effects of catechins in cardiac I/R injury and bring deep insight into the molecular mechanisms involved and dosage-dependency of these effects, as well as to outline potential gaps for translation of catechin-based treatments into clinical practice.


Author(s):  
Tsuyoshi Inoue

AbstractThe autonomic nervous system plays an important role in maintaining homeostasis in organisms. Recent studies have shown that it also controls inflammation by directly altering the function of the immune system. The cholinergic anti-inflammatory pathway (CAP) is one of the neural circuits operating through the vagus nerve. Acetylcholine released from the terminal of the vagus nerve, which is a parasympathetic nerve, acts on the α7 nicotinic acetylcholine receptor of macrophages and reduces inflammation in the body. Previous animal studies demonstrated that vagus nerve stimulation reduced renal ischemia–reperfusion injury. Furthermore, restraint stress and pulsed ultrasound had similar protective effects against kidney injury, which were mainly thought to be mediated by the CAP. Using optogenetics, which can stimulate specific nerves, it was also revealed that activation of the CAP by restraint stress was mediated by C1 neurons in the medulla oblongata. Nevertheless, there still remain many unclear points regarding the role of the nervous and immune systems in controlling renal diseases, and further research is needed.


Sign in / Sign up

Export Citation Format

Share Document