scholarly journals The Physical and Magnetic Properties of Electrodeposited Co-Fe Nanocoating with Different Deposition Times

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Koay Mei Hyie ◽  
Wan Normimi Roslini Abdullah ◽  
Nor Azrina Resali ◽  
W. T. Chong ◽  
Z. Salleh ◽  
...  

Using the electrodeposition process, cobalt-iron (Co-Fe) nanocrystalline coatings were successfully synthesized onto stainless steel in deposition times of 30, 60, and 90 minutes. The temperature used throughout the process was 50°C in an acidic environment of pH 3. By changing the deposition time, physical properties such as phase and crystallographic structure, surface morphology, grain size, microhardness, and magnetic properties of Co-Fe coatings were examined. FESEM micrographs showed that the grain sizes of the coatings were in the range from 57.9 nm to 70.2 nm. Dendrite and irregular shapes were found in the microstructure of Co-Fe nanocoating. The Co-Fe nanocrystalline coating prepared in a deposition time of 90 minutes achieved the highest microhardness of 339 HVN. The magnetic properties associated with Co-Fe nanocoating at longer deposition times show greater coercivity,Hc, and saturation magnetization,Ms, values of 56.43 Oe and 70.45 eμ/g, respectively. The M-H curves for all the Co-Fe coatings exhibited soft ferromagnetic behaviour with narrow hysteresis loops. It was found that increasing the deposition time also improved the microhardness and magnetic properties of Co-Fe nanocoating, which is much needed for long-life high-coercivity magnetic strip card applications.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1229
Author(s):  
Andrii Vovk ◽  
Sergey A. Bunyaev ◽  
Pavel Štrichovanec ◽  
Nikolay R. Vovk ◽  
Bogdan Postolnyi ◽  
...  

Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and post-deposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nara Lee ◽  
Jong Hyuk Kim ◽  
Dong Gun Oh ◽  
Hyun Jun Shin ◽  
Hwan Young Choi ◽  
...  

AbstractMagnetic properties can be manipulated to enhance certain functionalities by tuning different material processing parameters. Here, we present the controllable magnetization steps of hysteresis loops in double-perovskite single crystals of Eu2CoMnO6. Ferromagnetic order emerges below TC ≈ 122 K along the crystallographic c axis. The difficulty in altering Co2+ and Mn4+ ions naturally induces additional antiferromagnetic clusters in this system. Annealing the crystals in different gas environments modifies the mixed magnetic state, and results in the retardation (after O2-annealing) and bifurcation (after Ar-annealing) of the magnetization steps of isothermal magnetization. This remarkable variation offers an efficient approach for improving the magnetic properties of double-perovskite oxides.


2021 ◽  
Vol 93 (4) ◽  
pp. 40401
Author(s):  
Abdellah Sellam ◽  
El Kebir Hlil ◽  
Rodolphe Heyd ◽  
Abdelaziz Koumina

In this paper, the KKR (Korringa, Kohn, and Rostoker) is presented with coherent potential approximation methods which is used to investigate the electronic and magnetic properties of allotropic graphite forms of carbon and nickel-doped graphite. The density of states (DOS), band structure, total energy, and the magnetic moments of atoms are computed. The crystallographic structure optimization is carried out by evaluating the total energy as a function of unit lattice parameters. The DOS analysis reveals a partially metallic behavior of the compound. The magnetism vs the Ni-doping content in C1−xNix is also investigated by computing moments induced on atoms; the sensitivity of the magnetism to Ni-doping is also analyzed.


2021 ◽  
Vol 317 ◽  
pp. 119-124
Author(s):  
Sabiu Said Abdullahi ◽  
Garba Shehu Musa Galadanci ◽  
Norlaily Mohd Saiden ◽  
Josephine Ying Chyi Liew

The emergence of Dilute Magnetic Semiconductors (DMS) with a potentials for spintronic application have attracted much researches attention, special consideration has been given to ZnO semiconductor material due to its wide band gap of 3.37 eV, large exciting binding energy of 60 meV, moreover, its ferromagnetic behavior at room temperature when doped with transition metals. MxZn1-xO (M = Fe or Ni) nanoparticles were synthesized by microwave assisted synthesis method calcined at 600°C. The structural, morphological and magnetic properties of these nanoparticles were studied using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Vibrating Sample Magnetometer (VSM) respectively. Single phase Wurtzite hexagonal crystal structure was observed for the undoped and Fe doped ZnO nanoparticles with no any impurity, whereas Ni doped ZnO nanoparticles shows the formation of NiO impurities. The magnetic measurement reveals a diamagnetic behavior for the undoped ZnO meanwhile a clear room temperature ferromagnetism was observed for both Fe and Ni doped ZnO. Fe doped ZnO present a high saturation magnetization compared to Ni doped ZnO. However, Ni doped ZnO present high coercivity. The research was confirmed that Fe doped ZnO material will be good material combination for spintronic applications.


2008 ◽  
Vol 43 (5) ◽  
pp. 1112-1118 ◽  
Author(s):  
Sagrario M. Montemayor ◽  
L.A. García-Cerda ◽  
J.R. Torres-Lubián ◽  
O.S. Rodríguez-Fernández

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1006
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Lorena González-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires has been thoroughly analyzed, paying attention to the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni-, and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases), nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.


JOM ◽  
2018 ◽  
Vol 71 (2) ◽  
pp. 559-566 ◽  
Author(s):  
A. G. Popov ◽  
V. S. Gaviko ◽  
V. V. Popov ◽  
O. A. Golovnia ◽  
A. V. Protasov ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
pp. 21-27
Author(s):  
E. A. Volegova ◽  
T. I. Maslova ◽  
V. O. Vas’kovskiy ◽  
A. S. Volegov

Introduction The introduction indicates the need for the use of permanent magnets in various technology fields. The necessity of measuring the limit magnetic hysteresis loop for the correct calculation of magnetic system parameters is considered. The main sources of error when measuring boundary hysteresis loops are given. The practical impossibility of verifying blocks of magnetic measuring systems element-by-element is noted. This paper is devoted to the development of reference materials (RMs) for the magnetic properties of hard magnetic materials based on Nd2Fe14B, a highly anisotropic intermetallic compound.Materials and measuring methods Nd-Fe-B permanent magnets were selected as the material for developing the RMs. RM certified values were established using a CYCLE‑3 apparatus included in the GET 198‑2017 State Primary Measurement Standard for units of magnetic loss power, magnetic induction of constant magnetic field in a range from 0.1 to 2.5 T and magnetic flux in a range from 1·10–5 to 3·10–2 Wb.Results and its discussion Based on the experimentally obtained boundary hysteresis loops, the magnetic characteristics were evaluated, the interval of permitted certified values was set, the measurement result uncertainty of certified values was estimated, the RM validity period was established and the first RM batch was released.Conclusion On the basis of conducted studies, the RM type for magnetic properties of NdFeB alloy-based hard magnetic materials was approved (MS NdFeB set). The developed RM set was registered under the numbers GSO 11059–2018 / GSO 11062–2018 in the State RM Register of the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document