scholarly journals A Low Power Voltage Controlled Oscillator Design

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Manoj Kumar

The performance of voltage controlled oscillator (VCO) is of great importance for any telecommunication or data transmission network. Here, voltage controlled oscillators (VCOs) using three-transistor NAND gates have been designed. New delay cell with three-transistor NAND gate has been used for designing the ring based VCO circuits. Three-, five-, and seven-stage VCOs have been proposed. Output frequency has been controlled with supply voltage variation from 1.8 V to 2.4 V. Three stage VCO shows output frequency variation in the range of 3.2909 GHz to 4.2280 GHz whereas power consumption varies in the range of 335.4071 μW to 486.1816 μW. Five-stage VCO depicts frequency in the range of 1.9406 GHz to 2.5769 GHz with power consumption variation from 559.0118 μW to 810.3027 μW. Moreover a seven-stage VCO shows frequency variation from 1.3984 GHz to 1.8077 GHz. Power consumption of seven-stage VCO varies from 782.6165 μW to 1134.400 μW. Phase noise results for these VCOs have also been obtained. Power consumption, output frequency, and phase noise results of proposed circuits have been compared with earlier reported circuits, and the proposed circuits show significant improvements.

2021 ◽  
pp. 2140002
Author(s):  
Yanbo Chen ◽  
Shubin Zhang

Phase Locked Loop (PLL) circuit plays an important part in electronic communication system in providing high-frequency clock, recovering the clock from data signal and so on. The performance of PLL affects the whole system. As the frequency of PLL increases, designing a PLL circuit with lower jitter and phase noise becomes a big challenge. To suppress the phase noise, the optimization of Voltage Controlled Oscillator (VCO) is very important. As the power supply voltage degrades, the VCO becomes more sensitive to supply noise. In this work, a three-stage feedforward ring VCO (FRVCO) is designed and analyzed to increase the output frequency. A novel supply-noise sensing (SNS) circuit is proposed to suppress the supply noise’s influence on output frequency. Based on these, a 1.2 V 2 GHz PLL circuit is implemented in 110 nm CMOS process. The phase noise of this CMOS charge pump (CP) PLL is 117 dBc/Hz@1 MHz from test results which proves it works successfully in suppressing phase noise.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750184 ◽  
Author(s):  
Qiuzhen Wan ◽  
Jun Dong ◽  
Hui Zhou ◽  
Fei Yu

In this paper, a very low power modified current-reused quadrature voltage-controlled oscillator (QVCO) is proposed with the back-gate coupling technique for the quadrature signal generation. By stacking switching transistors in series like a cascode, the modified current-reused QVCO can be constructed in a totem-pole manner to reuse the dc biasing current and lower the power consumption. By utilizing the back-gates of switching transistors as coupling terminals to achieve the quadrature outputs, the back-gate coupled QVCO improves the phase noise and reduces the power consumption compared to the conventional coupling transistor based topology. Together with the modified current-reuse and back-gate coupling techniques, the proposed QVCO can operate at reduced supply voltage and power consumption while maintaining remarkable circuit performance in terms of low phase noise and wide tuning range. With a dc power of 1.6[Formula: see text]mW under a 0.8[Formula: see text]V supply voltage, the simulation results show the tuning range of the QVCO is from 2.36 to 3.04[Formula: see text]GHz as the tuning voltage is varied from 0.8 to 0.0[Formula: see text]V. The phase noise is [Formula: see text]118.3[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset frequency from the carrier frequency of 2.36[Formula: see text]GHz and the corresponding figure-of-merit of the QVCO is [Formula: see text]183.7[Formula: see text]dBc/Hz.


Author(s):  
AJIT SAMASGIKAR

A low phase noise, power efficient VCO using UMC 0.18μm CMOS technology has been proposed in this paper. The proposed VCO has a tuning range of 9.71GHz to 9.9GHz, with a phase noise of -79.88 dBc/Hz @ 600kHz offset. The Vtune ranging between 1V - 1.5V generates sustained oscillations. The maximum power consumption of the VCO is 11.9mW using a supply voltage of 1.8V with ±10% variation.


2013 ◽  
Vol 479-480 ◽  
pp. 1010-1013
Author(s):  
Tsung Han Han ◽  
Meng Ting Hsu ◽  
Cheng Chuan Chung

In this paper, we present low phase noise and low power of the voltage-controlled oscillators (VCOs) for 5 GHz applications. This chip is implemented by Taiwan Semiconductor Manufacturing Company (TSMC) standard 0.18 μm CMOS process. The designed circuit topology is included a current-reused configuration. It is adopted memory-reduced tail transistor technique. At the supply voltage 1.5 v, the measured output phase noise is-116.071 dBc/Hz at 1MHz offset frequency from the carrier frequency 5.2 GHz. The core power consumption is 3.7 mW, and tuning range of frequency is about 1.3 GHz from 4.8 to 6.1 GHz. The chip area is 826.19 × 647.83 um2.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950182 ◽  
Author(s):  
Nitin Kumar ◽  
Manoj Kumar

The differential ring voltage controlled oscillator (VCO) is one of the critical devices in wireless communication system having excellent stability, controllability and noise rejection ability. A novel design of delay cell is proposed for the four staged CMOS differential ring VCO with high output frequency, low power consumption and low phase noise. The differential ring VCO utilizes multiloop dual delay path topology to acquire both high output frequency and low phase noise. Results have been achieved in TSMC 0.18-[Formula: see text]m CMOS process with a supply voltage ([Formula: see text]) 1.8[Formula: see text]V. The proposed design achieves an output frequency range of 4.029[Formula: see text]GHz to 6.122[Formula: see text]GHz and power of 4.475[Formula: see text]mW is consumed with control voltage variation from 1[Formula: see text]V to 2[Formula: see text]V. The proposed VCO exhibits [Formula: see text]89.7[Formula: see text]dBc/Hz phase noise at 1[Formula: see text]MHz offset frequency and the corresponding figure of merit (FoM) is [Formula: see text]155.9[Formula: see text]dBc/Hz. The design of differential ring VCO with novel delay stage has improved performance in terms of power consumption, output oscillation frequency and phase noise.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7648
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This paper proposes a hybrid dual path sub-sampling phase-locked loop (SSPLL), including a proportional path (P-path) and an integral path (I-path), with 0.8 V supply voltage. A differential master–slave sampling filter (MSSF), replacing the sub-sampling charge pump (SSCP), composed the P-path to avoid the degraded feature caused by the decreasing of the supply voltage. The I-path is built by a rail-to-rail SSCP to suppress the phase noise of the voltage-controlled oscillator (VCO) and avoid the trouble of locking at the non-zero phase offset (as in type-I PLL). The proposed design is implemented in a 40-nm CMOS process. The measured output frequency range is from 5.3 to 5.9 GHz with 196.5 fs root mean square (RMS) integrated jitter and −251.6 dB FoM.


2019 ◽  
Vol 8 (4) ◽  
pp. 5409-5416

Ring VCO with variable center frequency incorporating the design of differential delay cell working at low power is illustrated in the current research work. Concept of variable frequency with low power consumption is a novel VCO implementation technique. A differential delay cell is used to generate variable frequency to design a ring VCO at 32 nm technology operated at 1.2 V power supply voltage to achieve low power and low phase noise characteristics. Five stage ring VCO is designed with switches, to ensure that one stage works at a time, keeping two stages off. This switching of stages is dependend on the desired frequency of operation by the VCO. The proposed research work also facilitate the additional computation of width and length of PMOS and NMOS transistor along with the computation of optimal parameters. At 1 MHz offset frequency, the proposed VCO achieves phase noise of - 105.53 dBc/Hz with minimum power consumption of 1 mW. The proposed VCO is poised to act as a major building block of a multi-standard wireless communication system such as GSM, Blue tooth, and 802.11g ZigBee applications.


2014 ◽  
Vol 6 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Meng-Ting Hsu ◽  
Po-Hung Chen ◽  
Yao-Yen Lee

In this paper, a low-power CMOS LC voltage-controlled oscillator (VCO) with body-biasing and low-phase noise with Q-enhancement techniques is presented. A self-body biased circuit is introduced that can reduce power consumption. Some derivations of the Q-enhancement and how to improve the phase noise of the circuit are also discussed. This chip is implemented by the Taiwan Semiconductor Manufacture Company 0.18 µm 1P6M process. The measurement results exhibit a tuning range of 14.7% from 4.92 to 5.7 GHz at a supply voltage of 1.4 V. The power consumption of the core circuit and figure of merit are 2.5 mW and −188.6 dBc/Hz. The phase noise is −118 dBc/Hz@1 MHz at an operation frequency of 4.94 GHz.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250046
Author(s):  
MOHAMMAD NIABOLI-GUILANI ◽  
MAHROKH MAGHSOODI ◽  
ALIREZA SABERKARI ◽  
REZA MESHKIN

This paper presents a novel low power consumption, low phase noise, and high tuning range CMOS cross-coupled voltage-controlled oscillator (VCO). Using common mode double-pseudo-resistance technique in the proposed circuit leads to low power dissipation without degrading the phase noise. Additionally, band-switching capacitor array is employed in order to increase the tuning range. The schematic circuit of the proposed VCO is simulated in 0.18 μm 1P6M CMOS process and simulation results show high efficiency of the proposed circuit. The overall tuning frequency range is from 1.7 GHz to 3.18 GHz (59%) with tuning voltage variation range from 0 V to 1.5 V. The proposed VCO circuit has phase noise of -102.6 and -124.3 dBc/Hz at 100 KHz and 1 MHz offset frequency from the carrier, respectively, while consumes 1.98 mW power at 1.5 V supply voltage.


Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


Sign in / Sign up

Export Citation Format

Share Document