scholarly journals A LOW PHASE NOISE, POWER EFFICIENT VOLTAGE CONTROLLED OSCILLATOR USING 0.18-μM CMOS TECHNOLOGY

Author(s):  
AJIT SAMASGIKAR

A low phase noise, power efficient VCO using UMC 0.18μm CMOS technology has been proposed in this paper. The proposed VCO has a tuning range of 9.71GHz to 9.9GHz, with a phase noise of -79.88 dBc/Hz @ 600kHz offset. The Vtune ranging between 1V - 1.5V generates sustained oscillations. The maximum power consumption of the VCO is 11.9mW using a supply voltage of 1.8V with ±10% variation.

Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


2017 ◽  
Vol 26 (11) ◽  
pp. 1750184 ◽  
Author(s):  
Qiuzhen Wan ◽  
Jun Dong ◽  
Hui Zhou ◽  
Fei Yu

In this paper, a very low power modified current-reused quadrature voltage-controlled oscillator (QVCO) is proposed with the back-gate coupling technique for the quadrature signal generation. By stacking switching transistors in series like a cascode, the modified current-reused QVCO can be constructed in a totem-pole manner to reuse the dc biasing current and lower the power consumption. By utilizing the back-gates of switching transistors as coupling terminals to achieve the quadrature outputs, the back-gate coupled QVCO improves the phase noise and reduces the power consumption compared to the conventional coupling transistor based topology. Together with the modified current-reuse and back-gate coupling techniques, the proposed QVCO can operate at reduced supply voltage and power consumption while maintaining remarkable circuit performance in terms of low phase noise and wide tuning range. With a dc power of 1.6[Formula: see text]mW under a 0.8[Formula: see text]V supply voltage, the simulation results show the tuning range of the QVCO is from 2.36 to 3.04[Formula: see text]GHz as the tuning voltage is varied from 0.8 to 0.0[Formula: see text]V. The phase noise is [Formula: see text]118.3[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset frequency from the carrier frequency of 2.36[Formula: see text]GHz and the corresponding figure-of-merit of the QVCO is [Formula: see text]183.7[Formula: see text]dBc/Hz.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550024 ◽  
Author(s):  
Mohammed Aqeeli ◽  
Abdullah Alburaikan ◽  
Cahyo Muvianto ◽  
Xianjun Huang ◽  
Zhirun Hu

A wideband CMOS LC tank voltage-controlled oscillator (VCO) with low phase noise variations and a linearized gain has been designed using a new binary-weighted switched-capacitor and digitally-controlled varactor bank. The novel design has the advantages of more linear VCO frequency tuning, lower phase noise and reduced gain to variations in supply voltage. The proposed VCO has been designed using UMC 90-nm, 6-metal CMOS technology and features phase noise variation of less than 4.9 dBc/Hz. The VCO operates from 3.45 to 6.55 GHz, with phase noise of -133.4 dBc/Hz at a 1 MHz offset, a figure of merit (FoM) of -203.3 dBc/Hz, less than 41 dBm spurious harmonics, and a total VCO core current consumption of 1.18 mA from a 3.3 V voltage supply. To the authors' knowledge, this is the lowest phase noise variation ever reported.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750080 ◽  
Author(s):  
Nadia Gargouri ◽  
Dalenda Ben Issa ◽  
Zied Sakka ◽  
Abdennaceur Kachouri ◽  
Mounir Samet

This study presents a two-stage ring voltage-controlled oscillator (VCO) for use in impulse-radio ultra-wideband (IR-UWB) applications. A systematic and efficient graphical optimization method was employed to find the optimal dimensions of the VCO which give a best performance. A good agreement was observed between the desired specifications and simulation results with regard to the optimum component size of the VCO circuit. The operation range of the VCO was extended to cover an ultra-wide tuning range of 176.6%. The phase noise was [Formula: see text]107.1[Formula: see text]dBc/Hz at 10[Formula: see text]MHz offset frequency from a carrier frequency of 4[Formula: see text]GHz. The power consumption of VCO was 7.41[Formula: see text]mW from a 1.8[Formula: see text]V supply voltage. A large tuning range, low power, and appropriate phase noise were obtained with the optimum components size obtained through the optimization method.


In Wireless communication system VCO is major part which regulates the frequency according to the voltage. Ring oscillator of one type of VCO is used. The topology of Ring oscillator is current starved Ring VCO, is used. In this topology the oscillation frequency is regulated by MOS capacitance. MOS capacitance is added at the end of every stage of inverter.180 nm CMOS technology is used in this paper. The supply voltage is 1.8V and control voltage is varied from 0V to 1.8V. The simulated results are shown that good tuning range from 2.06GHz to 2.62 GHz. which is used in application of wireless system. The phase noise is measured -112dbc/Hz at 1MHz.


Author(s):  
Prakash Sharma

Abstract: This paper presents a relative study among two Ring oscillators architecture (CMOS, NMOS) and current-starved Voltage-controlled oscillator (CS-VCO) on the basis of different parameters like power dissipation ,phase noise etc. All the design has been done in 45- nm CMOS technology node and 2.3 GHz Centre frequency have been taken for the comparison because of their applications in AV Devices and Radio control. An inherent idea of the given performance parameters has been realize by thecomparative study. The comparative data shows that NMOS based Ring oscillator is good option in terms of the phase noise performance. In this study NMOS Ring Oscillator have attain a phase noise -97.94 dBc/Hz at 1 MHz offset frequency from 2.3 GHz center frequency. The related data also shows that CMOS Ring oscillator is the best option in terms of power consumption. In this work CMOS Ring oscillator evacuatea power of 1.73 mW which is quite low. Keywords: Voltage controlled oscillator (VCO), phase noise, power consumption, Complementary metal-oxide-semiconductor (CMOS), Current Starved Voltage-Controlled Oscillator (CS- VCO), Pull up network (PUN), Pull down network (PDN)


2014 ◽  
Vol 519-520 ◽  
pp. 1095-1098
Author(s):  
Cheng Hong Dong ◽  
Chang Chun Zhang ◽  
Yu Feng Guo ◽  
Lei Lei Liu ◽  
Xin Cun Ji ◽  
...  

A novel low phase noise LC Voltage Controlled Oscillator (LC-VCO) is designed in standard 0.18μm CMOS technology. Instead of common NMOS cross-pairs for a conventional complementary LC VCO, both body-biasing and Q-enhancement techniques are employed to provide a larger negative resistance for the VCO. Post-layout simulations showed that it can oscillate at a frequency range of 4.34-4.73GHz, and comsume a supply current of 1.52mA from a supply voltage of 1.8V. The VCO achieves a phase noise of -132.8dBc/Hz @ 1MHz offset and a figure of merit (FOM) of -195.9dBc/Hz at the frequency of 4.5GHz. A die area of 475μm×498.6μm is occupied.


2014 ◽  
Vol 6 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Meng-Ting Hsu ◽  
Po-Hung Chen ◽  
Yao-Yen Lee

In this paper, a low-power CMOS LC voltage-controlled oscillator (VCO) with body-biasing and low-phase noise with Q-enhancement techniques is presented. A self-body biased circuit is introduced that can reduce power consumption. Some derivations of the Q-enhancement and how to improve the phase noise of the circuit are also discussed. This chip is implemented by the Taiwan Semiconductor Manufacture Company 0.18 µm 1P6M process. The measurement results exhibit a tuning range of 14.7% from 4.92 to 5.7 GHz at a supply voltage of 1.4 V. The power consumption of the core circuit and figure of merit are 2.5 mW and −188.6 dBc/Hz. The phase noise is −118 dBc/Hz@1 MHz at an operation frequency of 4.94 GHz.


2012 ◽  
Vol 256-259 ◽  
pp. 2373-2378
Author(s):  
Wu Shiung Feng ◽  
Chin I Yeh ◽  
Ho Hsin Li ◽  
Cheng Ming Tsao

A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm CMOS process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between -99.98 and -115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm2.


Author(s):  
Daniel Reiter ◽  
Hao Li ◽  
Herbert Knapp ◽  
Jonas Kammere ◽  
Soran Majied ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document