scholarly journals Downregulation of Bcl-2 Expression by miR-34a Mediates Palmitate-Induced Min6 Cells Apoptosis

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaojie Lin ◽  
Hongyu Guan ◽  
Zhimin Huang ◽  
Juan Liu ◽  
Hai Li ◽  
...  

Recent studies have demonstrated that the expression of miR-34a is significantly upregulated and associated with cell apoptosis in pancreaticβ-cell treated with palmitate. Nevertheless, the underlying detailed mechanism is largely unknown. Here, we showed that miR-34a was significantly induced in Min6 pancreaticβ-cell upon palmitate treatment. Elevated miR-34a promoted Min6 cell apoptosis. Intriguingly, ectopic expression of miR-34a lowered the expression of Bcl-2, an antiapoptotic protein. Luciferase reporter assay indicated the direct interaction of miR-34a with the Bcl-2 3′-UTR. Moreover, downregulated expression of Bcl-2 induced by palmitate could be restored by inhibition of miR-34a. We conclude that direct suppression of Bcl-2 by miR-34a accounts for palmitate-induced increased apoptosis rate in pancreaticβ-cell.

2015 ◽  
Vol 37 (4) ◽  
pp. 1572-1580 ◽  
Author(s):  
Ping Zhu ◽  
Jingping Zhang ◽  
Jianfei Zhu ◽  
Jun Shi ◽  
Qiuwei Zhu ◽  
...  

Background/Aims: MicroRNAs (miRNAs) play an essential role in the tumorigenesis of gastric carcinoma (GC). MiR-429 has been recently reported to inhibit GC growth, but the underlying mechanisms are not clear. Methods: Here, we studied the levels of miR-429 and anti-apoptotic protein Bcl-2 in GC specimens. We performed bioinformatics analyses and used luciferase-reporter assay to analyze the relationship between miR-429 and Bcl-2 in GC cells. Cell survival upon Fluorouracil treatment was analyzed in a CCK assay. Cell apoptosis was measured by flow cytometry based FITC Annexin V apoptosis detection assay. Results: MiR-429 levels were significantly decreased and Bcl-2 levels were significantly increased in GC specimens, compared to the paired adjacent non-tumor gastric tissue. Moreover, the levels of miR-429 and Bcl-2 inversely correlated in GC specimens. MiR-429-low subjects had an overall inferior survival, compared to miR-429-high subjects. Bioinformatics analyses showed that miR-429 targeted the 3'-UTR of Bcl-2 mRNA to inhibit its translation, which was confirmed by luciferase-reporter assay. Overexpression of miR-429 inhibited Bcl-2-mediated cell survival against apoptosis induced by Fluorouracil, while depletion of miR-429 augmented it. Conclusion: Our data suggest that miR-429 suppression in GC promotes Bcl-2-mediated cancer cell survival against chemotherapy-induced cell death. Re-expression of miR-429 levels in GC cells may enhance cancer apoptosis during chemotherapy.


2019 ◽  
Vol 159 (4) ◽  
pp. 190-200 ◽  
Author(s):  
Mei-Ling Cao ◽  
Bin-Lu Zhu ◽  
Yuan-Yuan Sun ◽  
Guang-Rong Qiu ◽  
Wei-Neng Fu ◽  
...  

It is currently believed that the TBX1 gene is one of the core genes of congenital heart disease (CHD). However, there are few studies on the abnormal regulation of TBX1 gene expression. The purpose of this work was to investigate the role of miR-144 and TBX1 in cardiac development by studying the regulatory relationship and mechanism of miR-144 on TBX1/JAK2/STAT1 in cardiomyocytes. Cell proliferation was detected by MTT and clone formation assay and cell cycle and apoptosis by flow cytometry. The levels of miR-144 and TBX1 in H9c2 cells were assessed by qRT-PCR. Dual luciferase reporter assay was used to validate the direct targeting of TBX1 with miR-144. The protein expression levels of TBX1 and its downstream proteins were measured by Western blot analysis. miR-144 inhibited H9c2 cell proliferation by arresting cells in G1 phase. Furthermore, miR-144 induced H9c2 cell apoptosis and activated the JAK2/STAT1 signaling pathway. Bioinformatic predictions and luciferase reporter assay showed that miR-144 directly targets TBX1. Co-overexpression of miR-144 and TBX1 upregulated cell proliferation by accelerating G1 to S phase transition and downregulated cell apoptosis through inhibiting the JAK2/STAT1 signaling pathway. miR-144 acts as a proliferation inhibitor in cardiomyocytes via the TBX1/JAK2/STAT1 axis and is therefore a potential novel therapeutic target for CHD treatment.


2020 ◽  
Author(s):  
WuBin Weng ◽  
ChangMing Liu ◽  
GuoMin Li ◽  
QiongFang Ruan ◽  
HuiZhang Li ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are one of the major causes of tumorigenesis. However, the roles and mechan­­isms of lncRNA SNHG16 in prostate cancer (PCa) remain unknown. The purpose of this study was to elucidate the mech­­anisms of lncRNA SNHG16 in the proliferation and metastasis of human PCa cells.Material and Methods: First, the quantitative polymerase chain reaction (qPCR) was used to measure SNHG16 expression in PCa tissues and adjacent normal tissues (n=80). Down-regulate and over-express SNHG16 in human PCa DU-145 cell. Then cell proliferation was detected by CCK8 assay, cell apoptosis was analyzed by flow cytometry, cell migration were determined by wound healing, and cell invasion was examined by transwell. Western blot assays were used to examine the expression of the TGFBR2, c-MYC, E2F4, SMAD2, p-SMAD2, SMAD3, and p-SMAD3. Second, the targeting relationship between SNHG16 and hsa-miR-373-3p was verified by dual-luciferase reporter assay and rescue experiments. Third, the targeting relationship between hsa-miR-373-3p and TGFBR2 was verified by dual-luciferase reporter assay and rescue experiments. Results: The expression of SNHG16 was significant increase in PCa tissues (Z=-8.405, P<0.001), and with significant correlation with patient's age (<60 and ≥60 years old, P=0.007). Silencing SNHG16 inhibited DU-145 cell proliferation, migration, and invasion, while induced cell apoptosis significantly (P<0.01, respectively). Overexpressing SNHG16 promoted cell proliferation, migration and invasion, and reduced cell apoptosis rate (P<0.05, respectively). SNHG16 overexpression observably increased TGFBR2, c-MYC, E2F4, p-SMAD2, and p-SMAD3 expression (P<0.001, respectively), but SNHG16 inhibition was opposite. However, SNHG16 did not regulate SMAD2 and SMAD3 expression. Next, hsa-miR-373-3p was found down-regulated in PCa tissues (Z=-8.344, P<0.001), and the down-regulation of hsa-miR-373-3p were closely linked to Gleason score (Gleason score: <7 and >7, P = 0.024). Hsa-miR-373-3p expression of hsa-miR-373-3p was negatively correlated with SNHG16 (r=-0.544, P<0.001). The result of dual-luciferase reporter assay and qPCR test revealed that hsa-miR-373-3p was a target of SNHG16. Hsa-mir-373-3p inhibitor could rescue sh-SNHG16-inhibited cell proliferation, migration and invasion by promoting TGFBR2, C-MYC, E2F4, P-Smad2, and P-smad3 expression. Finally, we found that TGFBR2 may be the target gene of hsa-mir-373-3p through TargetScan and starbase. Further research found that TGFBR2 was markedly up-regulated in PCa tissues (Z=-5.945, P<0.001), and the expression of TGFBR2 was negatively correlated with hsa-miR-373-3p (r=-0.627, P<0.001). Dual-luciferase reporter assay and qPCR test showed that TGFBR2 was a target of hsa-miR-373-3p. TGFBR2 knockdown could inhibit hsa-mir-373-3p inhibitor-induced cell proliferation, migration and invasion, and reversed the effect of hsa-mir-373-3p inhibitor on cell apoptosis. Based on the data, sh-TGFBR2 partially disabled hsa-mir-373-3p inhibitor effect. Conclusion: LncRNA SNHG16 might act as a ceRNA to regulate the proliferation and migration of DU-145 cells by modulating the hsa-miR-373-3p/TGFBR2/SMAD axis.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242179
Author(s):  
Yichao Zhao ◽  
Chaoqian Zhu ◽  
Qing Chang ◽  
Peng Peng ◽  
Jie Yang ◽  
...  

Objective This study aims to explore the mechanism of the miR-424-5p/E2F7 axis in hepatocellular carcinoma (HCC) and provide new ideas for targeted therapy of HCC. Methods Bioinformatics analysis was used to identify the target differentially expressed miRNA in HCC and predict its target gene. qRT-PCR was employed to verify the expression of miR-424-5p and E2F7 mRNA in HCC cells. Western blot was performed to detect the effect of miR-424-5p ectopic expression on the protein expression of E2F7. CCK-8 was used to detect proliferative activity of HCC cells and flow cytometry was carried out for analyzing cell cycle distribution. Dual luciferase reporter assay was conducted to verify the direct targeting relationship between miR-424-5p and E2F7. Results We observed that miR-424-5p was down-regulated in HCC cells. CCK-8 showed that overexpression of miR-424-5p inhibited cell proliferation, and flow cytometry showed that miR-424-5p could block cells in G0/G1 phase. E2F7 was up-regulated in HCC cells, and E2F7 overexpression could facilitate the proliferative ability of HCC cells and promote the cell cycle progressing from G0/G1 to S phase. Furthermore, dual-luciferase reporter assay indicated that miR-424-5p could directly down-regulate E2F7 expression. Analysis on cell function demonstrated that miR-424-5p inhibited the proliferation of HCC cells and blocked cell cycle at G0/G1 phase by targeting E2F7. Conclusion Our results proved that E2F7 was a direct target of miR-424-5p, and miR-424-5p could regulate cell cycle and further inhibit the proliferation of HCC cells by targeting E2F7.


2020 ◽  
Author(s):  
Chang Cheng ◽  
Xiuying Chen ◽  
Yuhan Wang ◽  
Wenchao Cheng ◽  
Xuzheng Zuo ◽  
...  

Abstract Background: This study aims to explore the role of mesenchymal stromal cells (MSCs)-derived exosomes (MSCs-Exo) in the cerebral ischemia-reperfusion (I/R) injury.Methods: Exosomes were isolated from MSCs of adult C57BL/6J mice by the gradient centrifugation method. The expression of miR-26a-5p and CDK6 in MSCs-Exo and mice brain tissues were evaluated by qRT-PCR and western blot. MiR-26a-5p mimics and miR-NC were transfected into MSCs, and exosomes were isolated from the stably expressing MSCs. Then MSCs-Exo-miR-26a-5p mimics or MSCs-Exo-miR-NC was injected into mice through the tail vein, or added into medium to stimulate BV-2 cells. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometry. The apoptosis in brain tissues was evaluated by TUNEL staining assay. Bioinformatics analysis and luciferase reporter assay were performed to determine the relationship between miR-26a-5p and CDK6. Results: MiR-26a-5p was downregulated and CDK6 was upregulated in MSCs-Exo of MCAO and OGD model. MSCs-Exo-miR-26a-5p mimics significantly reduced cell apoptosis of OGD-injured BV-2 cells. MSCs-Exo-miR-26a-5p mimics significantly reduced infarct volume of MCAO-induced mice. Luciferase reporter assay revealed that CDK-6 was a target of miR-26a-5p. In addition, MSCs-Exo-miR-26a-5p mimics significantly decreased the expression of CDK6 in both OGD-induced BV-2 cells and MCAO-treated mice brains. Conclusion: Our results indicated that MSCs‑Exo attenuated I/R injury in mice by inhibiting microglia apoptosis via exosomal miR-26a-5p mediated suppression of CDK6. Our study shed light on the application of MSC-Exo as a potential therapeutic tool for cerebral I/R injury.


2022 ◽  
Vol 12 (3) ◽  
pp. 461-470
Author(s):  
Gang Quan ◽  
Bo Ren ◽  
Jian Xu ◽  
Jie Zhou ◽  
Guo Wu ◽  
...  

<sec> <title>Objective:</title> This study was designed to probe the influence and mechanism of lncRNA HOTAIR on migration, apoptosis and proliferation of hepatocellular carcinoma (HCC) cells. </sec> <sec> <title>Methods:</title> We evaluated LncRNA HOTAIR expression in HCC tissues and adjacent tissues, and serum of HCC patients and healthy controls. Later, we knocked down lncRNA HOTAIR, and utilized CCK-8 to determine Hep3B cell proliferation, flow cytometry for prospecting Hep3B cell apoptosis, and cell scratch assay for observing Hep3B cell migration.We anticipated the direct target of lncRNA HOTAIR, and adopted luciferase reporter assay to verify. Moreover, we inhibitedmiR-126-5p expression, and rescue experiment for evaluating the influence of si-HOTAIR+miR-126-5p inhibitors on Hep3B cell migration, apoptosis as well as proliferation. </sec> <sec> <title>Results:</title> Our results showed that lncRNA HOTAIR expression in tumor tissues and serum was significantly increased. Moreover, lncRNA HOTAIR inhibition significantly decreased the Hep3B cell proliferation rate, elevated Hep3B cell apoptosis rate, and inhibited Hep3B cell migration. Luciferase reporter assay suggested that miR-126-5p was the direct target of lncRNA HOTAIR. Furthermore, co-transfection of si-HOTAIR+miR-126-5p inhibitor could diminishthe effects of HOTAIR silencing on apoptosis, proliferation and migration. </sec> <sec> <title>Conclusion:</title> Silencing of lncRNA-HOTAIR can inhibit the HCC cell migration and proliferation, and increase the apoptosis by up-regulating miR-126-5p expression. </sec>


2021 ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background: Acute lung injury (ALI) is a pulmonary disorder that leads to acute failure of respiration and thereby results in a high mortality worldwide. Increasing studies have verified that TLR4 is a promoter in ALI, however, the underlying upstream mechanisms of TLR4 was still rarely investigated. Methods: Lipopolysaccharide (LPS) was used to induce cell model and animal model. A wide range of experiments including RT-qPCR, Western blot, ELISA, flow cytometry, H&E staining, RIP, luciferase activity and caspase-3 activity were carried out to figure out the expression status, specific role and potential upstream mechanism of TLR4.Result: RT-qPCR identified that TLR4 expression was upregulated in ALI mice and LPS-induced WI-38 cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to luciferase reporter assay. Besides, miR-26a-5p overexpression decreased the contents of proinflammatory factors (TNF-α and IL-1β) and restrained cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI through regulating TLR4. Afterwards, OIP5-AS1 was identified to bind with miR-26a-5p by RNA immunoprecipitation (RIP) and luciferase reporter assay. Functionally, OIP5-AS1 upregulation accelerated the inflammation injuries and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on proinflammatory factors and cell apoptosis.Conclusion: OIP5-AS1 accelerated ALI through regulating miR-26a-5p/TLR4 axis in ALI mice and LPS-induced cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jianwen Long ◽  
Xianming Pi

The abnormal expression of long noncoding RNA- (lncRNA-) MEG3 was clearly identified in a number of malignant tumors, but the specific function of MEG3 remains unknown in malignant melanoma until now. The research attempts to explore the effects of MEG3 on the growth and metastasis of malignant melanoma. MEG3 and miR-499-5p expression were determined by qRT-PCR method. Western blotting assay was applied to detect protein expression. Luciferase reporter assay was used to assess the correlation between MEG3 and miR-499-5p and between CYLD and miR-499-5p. Cell growth, cell cycle, and cell apoptosis were examined by CCK-8 assay, EdU assay, and flow cytometry assay, respectively. The invasion ability of melanoma cells was investigated by wound-healing and Transwell assays. The effect of MEG3 on growth of melanoma in vivo and cell chemosensitivity was detected by xenograft animal model and CCK-8 assay. As a result, the expression of MEG3 was decreased in melanoma tissues and cell lines. The level of MEG3 was significantly associated with poor prognosis. MEG3 could bind to miR-499-5p and CYLD mRNA contained a binding site of miR-499-5p. The expression of CYLD was reduced and the level of miR-499-5p was elevated in melanoma tissues and cell lines. Luciferase reporter assay and western blot assay confirmed that MEG3 regulated the expression of CYLD by sponging miR-499-5p. Functionally, upregulation of MEG3 inhibited melanoma cell proliferation, invasion, and migration, enhanced melanoma cell apoptosis, arrested melanoma cell cycle, and regulated the expression of E-cadherin, N-cadherin, and cyclin D1 by regulating CYLD expression mediated by sponging miR-499-5p. Importantly, overexpression of MEG3 suppressed the growth of xenograft tumor and improved chemotherapy sensitivity of A375 cells to cisplatin and 5-FU treatment. In conclusion, MEG3 has a crucial function in the tumorigenesis of melanoma, and MEG3 may be a potential therapeutic target in the treatment of melanoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuoyi He ◽  
Houminji Chen ◽  
Yongsheng Zhong ◽  
Qihang Yang ◽  
Xuemin Wang ◽  
...  

This study aimed to explore whether microRNA (miR) 223 affects microglial autophagy by targeting autophagy-related 16-like 1 (ATG16L1) in the kainic acid (KA) model of temporal lobe epilepsy (TLE). The miRNA and mRNA expression levels were quantified using quantitative real-time polymerase chain reaction (qRT-PCR), and the protein expression was investigated using western blotting. A dual-luciferase reporter assay was used to test the direct interaction between miR 223 and ATG16L1. In situ hybridization was performed to measure the hippocampal expression of miR 223. We used immunofluorescence staining to assess the expression of ATG16L1 and microtubule-associated protein light chain 3 (LC3) in the murine hippocampal microglia. Inhibitor of miR 223 was utilized to investigate the role of miR 223 in TLE, and the epileptic activity was assessed using electroencephalography (EEG). The autophagosomes were observed by transmission electron microscopy. In patients with TLE, the murine KA model of TLE, and the KA-stimulated BV2 cells, miR 223, and sequestosome 1 (SQSTM1/P62) expressions were remarkably increased, whereas ATG16L1 and LC3 levels were significantly decreased. Using a dual-luciferase reporter assay, ATG16L1 was determined as a direct target of miR 223. Treatment with antagomir 223 alleviated epilepsy, prevented abnormalities in EEG recordings and increased the ATG16L1 and LC3 levels in KA-treated mice. Inhibition of miR 223 induced increased autophagy in BV2 cells upon Rapamycin stimulation. These findings show that miR 223 affects microglial autophagy via ATG16L1 in the KA model of TLE. The miR 223/ATG16L1 pathway may offer a new treatment option for TLE.


Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932582090701 ◽  
Author(s):  
Jian Chen ◽  
Chuan Jiang ◽  
Juan Du ◽  
Chun-Li Xie

Background: MiR-142-5p has been demonstrated to hold significant implications in neurological diseases. However, the impact and underlying regulatory mechanism of miR-142-5p in Parkinson’s disease (PD) are still ominous. Methods: To simulate the PD, 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cell model was used in this study. Levels of messenger RNA and protein were tested by quantitative real-time polymerase chain reaction and Western blot analyses, respectively. The direct interaction between miR-142-5p and Beclin 1 (BECN1) was assessed by luciferase reporter assay. Furthermore, Cell Counting Kit-8 assay was performed to assess cytotoxicity of SH-SY5Y cell. Results: In consequence, a significant decrease of miR-142-5p was observed in 6-OHDA-induced SH-SY5Y cells. Over-/Low-expressed miR-142-5p resulted in a significant enhancement/inhibition on cell vitalities of 6-OHDA-treated SH-SY5Y cells, which might be modulated by repressing cellular autophagy through inhibiting level of BECN1 and LC3 II/LC3 I and elevating P62 level. Luciferase reporter assay showed that the BECN1 was the target gene of miR-142-5p. Additionally, the loss/gain of BECN1 rescued/blocked the effects of miR-142-5p on the viability of 6-OHDA-induced SH-SY5Y cells. Conclusions: These results highlight that miR-142-5p functions as a neuroprotective regulator in 6-OHDA-induced neuronal SH-SY5Y cells simulating PD model in vitro via regulating autophagy-related protein BECN1 and autophagy to influence cell viability.


Sign in / Sign up

Export Citation Format

Share Document