scholarly journals Isolation of Salt Stress-Related Genes fromAspergillus glaucusCCHA by Random Overexpression inEscherichia coli

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Fang ◽  
Xiaojiao Han ◽  
Lihua Xie ◽  
Mingying Liu ◽  
Guirong Qiao ◽  
...  

The halotolerant fungusAspergillus glaucusCCHA was isolated from the surface of wild vegetation around a saltern with the salinity range being 0–31%. Here, a full-length cDNA library ofA. glaucusunder salt stress was constructed to identify genes related to salt tolerance, and one hundred clones were randomly selected for sequencing and bioinformatics analysis. Among these, 82 putative sequences were functionally annotated as being involved in signal transduction, osmolyte synthesis and transport, or regulation of transcription. Subsequently, the cDNA library was transformed intoE. colicells to screen for putative salt stress-related clones. Five putative positive clones were obtained fromE. colicells grown on LB agar containing 1 M NaCl, on which they showed rapid growth compared to the empty vector control line. Analysis of transgenicArabidopsis thalianalines overexpressingCCHA-2142demonstrated that the gene conferred increased salt tolerance to plants as well by protecting the cellular membranes, suppressing the inhibition of chlorophyll biosynthesis. These results highlight the utility of thisA. glaucuscDNA library as a tool for isolating and characterizing genes related to salt tolerance. Furthermore, the identified genes can be used for the study of the underlying biology of halotolerance.

2018 ◽  
Vol 19 (11) ◽  
pp. 3446 ◽  
Author(s):  
Mei Zhang ◽  
Hui Zhang ◽  
Jie-Xuan Zheng ◽  
Hui Mo ◽  
Kuai-Fei Xia ◽  
...  

Ipomoea pes-caprae is a seashore halophytic plant and is therefore a good model for studying the molecular mechanisms underlying salt and stress tolerance in plant research. Here, we performed Full-length cDNA Over-eXpressor (FOX) gene hunting with a functional screening of a cDNA library using a salt-sensitive yeast mutant strain to isolate the salt-stress-related genes of I. pes-caprae (IpSR genes). The library was screened for genes that complemented the salt defect of yeast mutant AXT3 and could grow in the presence of 75 mM NaCl. We obtained 38 candidate salt-stress-related full-length cDNA clones from the I. pes-caprae cDNA library. The genes are predicted to encode proteins involved in water deficit, reactive oxygen species (ROS) scavenging, cellular vesicle trafficking, metabolic enzymes, and signal transduction factors. When combined with the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses, several potential functional salt-tolerance-related genes were emphasized. This approach provides a rapid assay system for the large-scale screening of I. pes-caprae genes involved in the salt stress response and supports the identification of genes responsible for the molecular mechanisms of salt tolerance.


2017 ◽  
Vol 44 (5) ◽  
pp. 473 ◽  
Author(s):  
Jesper T. Pedersen ◽  
Michael Palmgren

The purpose of this minireview is to discuss the feasibility of creating a new generation of salt-tolerant plants that express Na+/K+-ATPases from animals or green algae. Attempts to generate salt-tolerant plants have focussed on increase the expression of or introducing salt stress-related genes from plants, bryophytes and yeast. Even though these approaches have resulted in plants with increased salt tolerance, plant growth is decreased under salt stress and often also under normal growth conditions. New strategies to increase salt tolerance are therefore needed. Theoretically, plants transformed with an animal-type Na+/K+-ATPase should not only display a high degree of salt tolerance but should also reduce the stress response exhibited by the first generation of salt-tolerant plants under both normal and salt stress conditions. The biological feasibility of such a strategy of producing transgenic plants that display improved growth on saline soil but are indistinguishable from wild-type plants under normal growth conditions, is discussed.


2020 ◽  
Vol 47 (10) ◽  
pp. 912
Author(s):  
Anis Ben Hsouna ◽  
Thaura Ghneim-Herrera ◽  
Walid Ben Romdhane ◽  
Amira Dabbous ◽  
Rania Ben Saad ◽  
...  

Soil salinity is an abiotic stress that reduces agricultural productivity. For decades, halophytes have been studied to elucidate the physiological and biochemical processes involved in alleviating cellular ionic imbalance and conferring salt tolerance. Recently, several interesting genes with proven influence on salt tolerance were isolated from the Mediterranean halophyte Lobularia maritima (L.) Desv. A better understanding of salt response in this species is needed to exploit its potential as a source of stress-related genes. We report the characterisation of L. maritima’s response to increasing NaCl concentrations (100–400 mM) at the physiological, biochemical and molecular levels. L. maritima growth was unaffected by salinity up to 100 mM NaCl and it was able to survive at 400 mM NaCl without exhibiting visual symptoms of damage. Lobularia maritima showed a Na+ and K+ accumulation pattern typical of a salt-includer halophyte, with higher contents of Na+ in the leaves and K+ in the roots of salt-treated plants. The expression profiles of NHX1, SOS1, HKT1, KT1 and VHA-E1 in salt-treated plants matched this Na+ and K+ accumulation pattern, suggesting an important role for these transporters in the regulation of ion homeostasis in leaves and roots of L. maritima. A concomitant stimulation in phenolic biosynthesis and antioxidant enzyme activity was observed under moderate salinity, suggesting a potential link between the production of polyphenolic antioxidants and protection against salt stress in L. maritima. Our findings indicate that the halophyte L. maritima can rapidly develop physiological and antioxidant mechanisms to adapt to salt and manage oxidative stress.


2019 ◽  
Vol 20 (22) ◽  
pp. 5782 ◽  
Author(s):  
Jianbo Li ◽  
Pei Sun ◽  
Yongxiu Xia ◽  
Guangshun Zheng ◽  
Jingshuang Sun ◽  
...  

The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants’ tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.


2021 ◽  
Author(s):  
Dan Liu ◽  
Yang-Yang Li ◽  
Zhi-Cheng Zhou ◽  
Xiaohua Xiang ◽  
Xin Liu ◽  
...  

ABSTRACT In plants, reactive oxygen species (ROS) produced following the expression of the respiratory burst oxidase homolog (Rboh) gene are important regulators of stress responses. However, little is known about how plants acclimate to salt stress through the Rboh-derived ROS signaling pathway. Here, we showed that a 400-bp fragment of the tobacco (Nicotiana tabacum) NtRbohE promoter played a critical role in the salt response. Using yeast one-hybrid (Y1H) screens, NtbHLH123, a bHLH transcription factor, was identified as an upstream partner of the NtRbohE promoter. These interactions were confirmed by Y1H, electrophoretic mobility assay, and chromatin immunoprecipitation assays. Overexpression of NtbHLH123 resulted in greater resistance to salt stress, while NtbHLH123-silenced plants had reduced resistance to salt stress. We also found that NtbHLH123 positively regulates the expression of NtRbohE and ROS production soon after salt stress treatment. Moreover, knockout of NtRbohE in the 35S::NtbHLH123 background resulted in reduced expression of ROS-scavenging and salt stress-related genes and salt tolerance, suggesting that NtbHLH123-regulated salt tolerance is dependent on the NtbHLH123-NtRbohE signaling pathway. Our data show that NtbHLH123 is a positive regulator and acts as a molecular switch to control a Rboh-dependent mechanism in response to salt stress in plants.


2014 ◽  
Vol 37 (9) ◽  
pp. 839-850 ◽  
Author(s):  
Jia-Hui LU ◽  
Xin LÜ ◽  
Yong-Chao LIANG ◽  
Hai-Rong LIN

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanyong Li ◽  
Xiaoqian Tang ◽  
Xiuyan Yang ◽  
Huaxin Zhang

AbstractNitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L−1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L−1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L−1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Sign in / Sign up

Export Citation Format

Share Document