scholarly journals Biological Treatment of Textile Effluent Using Candida zeylanoides and Saccharomyces cerevisiae Isolated from Soil

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
O. P. Abioye ◽  
O. T. Mustapha ◽  
S. A. Aransiola

This study evaluates the efficacy of yeasts isolated from soil in the treatment of textile wastewater. Two yeast species were isolated from soil; they were identified as Candida zeylanoides and Saccharomyces cerevisiae. The yeasts were inoculated into flask containing effluent and incubated for 15 days. Saccharomyces cerevisiae showed the most significant treatment capacity with a 66% reduction in BOD; this was followed closely by Candida zeylanoides with 57.3% reduction in BOD and a consortium of the two species showed the least remediation potential of 36.9%. The use of Saccharomyces cerevisiae and Candida zeylanoides in treatment of textile wastewater will help to limit the adverse environmental and health implications associated with disposal of untreated effluent into water bodies.

2020 ◽  
Vol 16 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Chandrika Kadkol ◽  
Ian Macreadie

Background: Tryptamine, a biogenic monoamine that is present in trace levels in the mammalian central nervous system, has probable roles as a neurotransmitter and/or a neuromodulator and may be associated with various neuropsychiatric disorders. One of the ways tryptamine may affect the body is by the competitive inhibition of the attachment of tryptophan to tryptophanyl tRNA synthetases. Methods: This study has explored the effects of tryptamine on growth of six yeast species (Saccharomyces cerevisiae, Candida glabrata, C. krusei, C. dubliniensis, C. tropicalis and C. lusitaniae) in media with glucose or ethanol as the carbon source, as well as recovery of growth inhibition by the addition of tryptophan. Results: Tryptamine was found to have an inhibitory effect on respiratory growth of all yeast species when grown with ethanol as the carbon source. Tryptamine also inhibited fermentative growth of Saccharomyces cerevisiae, C. krusei and C. tropicalis with glucose as the carbon source. In most cases the inhibitory effects were reduced by added tryptophan. Conclusion: The results obtained in this study are consistent with tryptamine competing with tryptophan to bind mitochondrial and cytoplasmic tryptophanyl tRNA synthetases in yeast: effects on mitochondrial and cytoplasmic protein synthesis can be studied as a function of growth with glucose or ethanol as a carbon source. Of the yeast species tested, there is variation in the sensitivity to tryptamine and the rescue by tryptophan. The current study suggests appropriate yeast strains and approaches for further studies.


2021 ◽  
Author(s):  
◽  
Marcél Van der Merwe

A mutualistic association between Cydia pomonella and yeasts belonging to the genus Metschnikowia has previously been demonstrated. Larval feeding galleries inoculated with M. andauensis, reduced larval mortality and enhanced larval development. Additionally, adult C. pomonella female oviposition preference was also shown to be influenced by the volatiles produced by M. andauensis. This mutualistic relationship was manipulated for biological control purposes, by combining M. pulcherrima with the baculovirus Cydia pomonella granulovirus. The combination of M. pulcherrima with brown cane sugar and CpGV in laboratory assays and field trials resulted in a significant increase in larval mortality. A similar observation was made when M. pulcherrima was substituted for Saccharomyces cerevisiae. This indicates that yeasts harbour the potential for use in biological control, especially when combined with other well-established biocontrol methods. Thaumatotibia leucotreta is a phytophagous insect endemic to southern Africa. It is highly significant to the South African citrus industry due to its classification as a phytosanitary pest by most international markets. An integrated pest management programme has been implemented to control T. leucotreta. The baculovirus Cryptophlebia leucotreta granulovirus forms one component of this programme and is highly effective. In this study, we proposed to determine which yeast species occur naturally in the gut of T. leucotreta larvae and to examine whether any of the isolated yeast species, when combined with the CrleGV-SA, enhance its effectiveness. Firstly, Navel oranges infested with T. leucotreta larvae were collected from geographically distinct citrus-producing regions across South Africa. This led to the isolation and identification of six yeast species from the gut of T. leucotreta larvae via PCR amplification and sequencing of the internal transcribed spacer region and D1/D2 domain of the large subunit. Six yeast species were identified, viz. Meyerozyma guilliermondii, Hanseniaspora uvarum, Clavispora lusitaniae, Kluyveromyces marxianus, Pichia kudriavzevii and Pichia kluyveri. Additionally, Saccharomyces cerevisiae was included as a control in all trials due to its commercial availability and use in the artificial diet used to rear T. leucotreta. Secondly, larval development and attraction assays were conducted with the isolated yeast species. Thaumatotibia leucotreta larvae that fed on Navel oranges inoculated with M. guilliermondii, P. kluyveri, H. uvarum, and S. cerevisiae had accelerated developmental periods and reduced mortality rates. Additionally, it was demonstrated that T. leucotreta neonates were attracted to YPD broth cultures inoculated with P. kluyveri, H. uvarum, P. kudriavzevii and K. marxianus for feeding. Thirdly, oviposition preference assays were conducted with adult T. leucotreta females to determine whether the isolated yeast species influence their egg-laying in two-choice and multiple-choice tests. Navel oranges were inoculated with a specific yeast isolate, and mated adult females were left to oviposit. Meyerozyma guilliermondii, P. kudriavzevii and H. uvarum were shown to influence adult T. leucotreta female oviposition preference in two-choice tests. However, multiple-choice tests using the aforementioned yeast species did not mimic these results. Lastly, a series of detached fruit bioassays were performed to determine the optimal yeast:virus ratio, test all isolated yeast species in combination with CrleGV-SA and to further enhance yeast/virus formulation through the addition of an adjuvant and surfactant. CrleGV-SA was applied at a lethal concentration that would kill 50 % of T. leucotreta larvae. The optimal yeast concentration to use alongside CrleGV-SA was determined. Pichia kluyveri, P. kudriavzevii, K. marxianus and S. cerevisiae in combination with CrleGV-SA increased larval mortality compared to CrleGV-SA alone. The inclusion of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae plus CrleGV-SA formulations greatly enhanced their efficacy. Additionally, semi-field trials were initiated using P. kudriavzevii and S. cerevisiae, with promising preliminary results being obtained, although more replicates need to be performed. The experiments performed in this study provide a platform for further research into the application of a yeast/virus combination as a novel control and monitoring option for T. leucotreta in the field.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
A. Espinel-Ingroff ◽  
J. Turnidge ◽  
A. Alastruey-Izquierdo ◽  
F. Botterel ◽  
E. Canton ◽  
...  

ABSTRACT Although the Sensititre Yeast-One (SYO) and Etest methods are widely utilized, interpretive criteria are not available for triazole susceptibility testing of Candida or Aspergillus species. We collected fluconazole, itraconazole, posaconazole, and voriconazole SYO and Etest MICs from 39 laboratories representing all continents for (method/agent-dependent) 11,171 Candida albicans, 215 C. dubliniensis, 4,418 C. glabrata species complex, 157 C. guilliermondii (Meyerozyma guilliermondii), 676 C. krusei (Pichia kudriavzevii), 298 C. lusitaniae (Clavispora lusitaniae), 911 C. parapsilosis sensu stricto, 3,691 C. parapsilosis species complex, 36 C. metapsilosis, 110 C. orthopsilosis, 1,854 C. tropicalis, 244 Saccharomyces cerevisiae, 1,409 Aspergillus fumigatus, 389 A. flavus, 130 A. nidulans, 233 A. niger, and 302 A. terreus complex isolates. SYO/Etest MICs for 282 confirmed non-wild-type (non-WT) isolates were included: ERG11 (C. albicans), ERG11 and MRR1 (C. parapsilosis), cyp51A (A. fumigatus), and CDR2 and CDR1 overexpression (C. albicans and C. glabrata, respectively). Interlaboratory modal agreement was superior by SYO for yeast species and by the Etest for Aspergillus spp. Distributions fulfilling CLSI criteria for epidemiological cutoff value (ECV) definition were pooled, and we proposed SYO ECVs for S. cerevisiae and 9 yeast and 3 Aspergillus species and Etest ECVs for 5 yeast and 4 Aspergillus species. The posaconazole SYO ECV of 0.06 µg/ml for C. albicans and the Etest itraconazole ECV of 2 µg/ml for A. fumigatus were the best predictors of non-WT isolates. These findings support the need for method-dependent ECVs, as, overall, the SYO appears to perform better for susceptibility testing of yeast species and the Etest appears to perform better for susceptibility testing of Aspergillus spp. Further evaluations should be conducted with more Candida mutants.


2017 ◽  
Vol 39 (2) ◽  
pp. 189
Author(s):  
Flávia Deffert ◽  
Bruna Carla Agustini ◽  
Geraldo Picheth ◽  
Tania Maria Bordin Bonfim

Fructooligosaccharides are catalyzed by β–fructofuranosidase enzyme, produced by many microorganisms. However, in order to achieve a more profitable, low time-consuming process with lower cost, researchers have sought alternatives. This study aimed to select and identify yeasts able to produce fructooligosaccharides and evaluate the influence of pH and temperature on their synthesis. Yeast suspensions, solutions of 500 g L-1 sucrose and three values of pH (4.5, 5.5, and 6.5) and temperature (40, 50, and 60ºC) were tested. Yeast species were identified by molecular techniques. Among 141 yeast isolates from grapes, 65 were able to synthesize fructooligosaccharides. The maximum concentration of fructooligosaccharides was 4.8% (w v-1), and Saccharomyces cerevisiae 222 produced 1-kestose and nystose. 


2015 ◽  
Author(s):  
Andrew C Bergen ◽  
Gerilyn M Olsen ◽  
Justin C Fay

Qualitative patterns of gene activation and repression are often conserved despite an abundance of quantitative variation in expression levels within and between species. A major challenge to interpreting patterns of expression divergence is knowing which changes in gene expression affect fitness. To characterize the fitness effects of gene expression divergence we placed orthologous promoters from eight yeast species upstream of malate synthase (MLS1) in Saccharomyces cerevisiae. As expected, we found these promoters varied in their expression level under activated and repressed conditions as well as in their dynamic response following loss of glucose repression. Despite these differences, only a single promoter driving near basal levels of expression caused a detectable loss of fitness. We conclude that the MLS1 promoter lies on a fitness plateau whereby even large changes in gene expression can be tolerated without a substantial loss of fitness.


2018 ◽  
Vol 7 (3.8) ◽  
pp. 106
Author(s):  
K J.Sosamony ◽  
P A.Soloman

Currently, water pollution control is one of the major logical zones. The textile industry is a major pollution causing industry among the industrial pollutions. Treatment of textile effluent utilizing customary physical as well as chemical strategies is costly, produces enormous amounts of sludge and needs the expansion of lethal chemicals. BOD to COD proportion of textile effluent is low. Thus it is not appropriate to treat textile effluent by a solitary physicochemical or biological process. In this investigation, the textile effluent is dealt with utilizing Moving Bed Bio-film Reactor (MBBR) with the magnetic field after improving the biodegradability by the solar photo-Fenton process. The carriers in MBBR is inoculated with azoarcus bacteria isolated from textile sludge. The fundamental  parameters as pH, carrier filling ratio and contact time were optimized utilizing Box Behnken factual design. The MBBR process has most extreme efficiency at pH 7, filling ratio of 62% and a contact time 2.4 days. In this optimum condition 68.9% BOD and 80% COD  are expelled. At the point when the pretreated wastewater was dealt with MBBR reactor under the influence of magnetic field, the efficiency of the treatment is additionally expanded, so 87.4% COD expulsion and 87% BOD evacuation were accomplished at 12 mT attractive field power when exposure time was at 12 hrs.  


2020 ◽  
Vol 8 (7) ◽  
pp. 1038 ◽  
Author(s):  
Javier Vicente ◽  
Javier Ruiz ◽  
Ignacio Belda ◽  
Iván Benito-Vázquez ◽  
Domingo Marquina ◽  
...  

Over the last decade, several non-Saccharomyces species have been used as an alternative yeast for producing wines with sensorial properties that are distinctive in comparison to those produced using only Saccharomyces cerevisiae as the classical inoculum. Among the non-Saccharomyces wine yeasts, Metschnikowia is one of the most investigated genera due to its widespread occurrence and its impact in winemaking, and it has been found in grapevine phyllospheres, fruit flies, grapes, and wine fermentations as being part of the resident microbiota of wineries and wine-making equipment. The versatility that allows some Metschnikowia species to be used for winemaking relies on an ability to grow in combination with other yeast species, such as S. cerevisiae, during the first stages of wine fermentation, thereby modulating the synthesis of secondary metabolites during fermentation in order to improve the sensory profile of the wine. Metschnikowia exerts a moderate fermentation power, some interesting enzymatic activities involving aromatic and color precursors, and potential antimicrobial activity against spoilage yeasts and fungi, resulting in this yeast being considered an interesting tool for use in the improvement of wine quality. The abovementioned properties have mostly been determined from studies on Metschnikowia pulcherrima wine strains. However, M. fructicola and M. viticola have also recently been studied for winemaking purposes.


Author(s):  
Kiran Meghwal ◽  
Reema Agrawal ◽  
Srishti Kumawat ◽  
Nirmala Kumari Jangid ◽  
Chetna Ameta

Life of living or non-living being depends on water; in short, water is life. But these days, with the growing industrialization, it is spoiling a lot. Wastewater contains contaminants like acids, bases, toxic organic and inorganic dissolved solids, and colors. Out of them, the most undesirable are colors caused mainly by dyes. Color and other compounds present in water are always not desirable for domestic or industrial needs. The wastes of dyes are predominant amongst all the complex industrial wastewater. This water is dark in color and highly toxic, blocking the sunlight and affecting the ecosystem. Among all the dyes, azo dyes contribute to commercial dyes used widely in textile, plastic, leather, and paper industries as additives. The removal and degradation of azo dyes in aquatic environment is important because they are highly toxic to aquatic organisms. For every industry, clean technology has become an important concern. In this chapter, the authors discuss about existing processes as well as promising new technologies for textile wastewater decolorisation.


Sign in / Sign up

Export Citation Format

Share Document