scholarly journals The Nanomechanical and Tribological Properties of Restorative Dental Composites after Exposure in Different Types of Media

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hong-Yi Fan ◽  
Xue-Qi Gan ◽  
Yang Liu ◽  
Zhuo-Li Zhu ◽  
Hai-Yang Yu

The aim of this study was to evaluate the effects of various acidic solutions on the surface mechanical properties of commercial resin composites with different microstructures (Filtek Z350 XT, TPH3, Durafill, and Superlux). Specimens were immersed in orange juice, cola, and distilled water for 5 days and the nanohardness, elastic modulus, and wear behavior of the samples were determined via the nanoindentation test and a reciprocating nanoscratch test. The nanoscratch morphology was observed using scanning electron microscopy (SEM) and the wear depth was recorded by scanning probe microscopy (SPM). The results indicate that the nanofilled resin composites had the greatest hardest and highest elastic modulus, whereas the microfilled composites exhibited the lowest nanohardness and elastic modulus values. SEM observations showed that all resin composites underwent erosion and surface degradation after immersion in acidic solutions. Furthermore, the wear resistance was influenced by the composition of the acidic solution and was correlated with the nanohardness and elastic modulus. The dominant wear mechanism changed from plastic deformation to delamination after immersion in acidic solutions.

2015 ◽  
Vol 40 (6) ◽  
pp. 603-613 ◽  
Author(s):  
T Takamizawa ◽  
WW Barkmeier ◽  
A Tsujimoto ◽  
D Scheidel ◽  
RL Erickson ◽  
...  

SUMMARY The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins—1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)—and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm3]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6.5); LX, 63.7 (4.5); UF, 70.5 (8.0); and Z1, 7.6 (1.2). Volume loss (mm3) and SDs for 200,000 cycles were as follows: PP, 0.311 (0.049); IG, 0.737 (0.074); LX, 0.919 (0.053); UF, 1.046 (0.127); and Z1, 0.111 (0.017). The two-way ANOVA showed a significant difference among materials (p<0.001) and number of cycles for both facet depth and volume loss. The post hoc test revealed differences (p<0.05) in wear values among the tested materials examined in this study. The findings provide valuable information regarding the flexural properties and the relative wear behavior of the provisional resins examined in this study.


2021 ◽  
Vol 5 (12) ◽  
pp. 327
Author(s):  
Dhaifallah Alqarni ◽  
Ali Alghamdi ◽  
Amr Saad ◽  
Abdullah Ali H. Alzahrani ◽  
Keiichi Hosaka

There has been a great tendency toward using resin composite in dentistry and exploring nano-hardness, elastic modulus, and effect of polishing on its mechanical properties after its artificial ageing. This study aimed to evaluate the effect of surface polishing of four different resin composites on their nano-hardness and elastic modulus. This effect was tested right after light curing of composite resin and after its artificial ageing (immersion in alcoholic medium). Nanoindentation test preparations, surface roughness, surface hardness, and scanning electron microscope were conducted across the four different resin composites: Clearfil AP-X (APX), Estelite Sigma Quick (ESQ), Beautifil II (BE2), and FiltekTM Supreme Ultra Universal restorative (FSU). We found that difference in fillers load and particle size are amongst the factors influencing hardness and modulus of elasticity. The APX is the highest in term of hardness due to fillers load and size while the ESQ is the lowest because all fillers in nano size and distributed homogenously. The significance of surface polishing of the studied resin composite restorations was highlighted. Future research may focus on exploring survival rate of polished and non-polished composite surfaces with emphasis on measuring degree of conversion and impacts of polished and non-polished surfaces on the individuals’ oral health quality of life.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1660
Author(s):  
Sevda Mihailova Yantcheva

The development of composite materials is subject to the desire to overcome polymerization shrinkage and generated polymerization stress. An indicator characterizing the properties of restorative materials, with specific importance for preventing secondary caries, is the integrity and durability of marginal sealing. It is a reflection of the effects of polymerization shrinkage and generated stress. The present study aimed to evaluate and correlate marginal integrity and micropermeability in second-class cavities restored with three different types of composites, representing different strategies to reduce polymerization shrinkage and stress: nanocomposite, silorane, and bulk-fill composite after a ten-month ageing period. Thirty standardized class ΙΙ cavities were prepared on extracted human molars. Gingival margins were 1 mm apical to the cementoenamel junction. Cavities were randomly divided into three groups, based on the composites used: FiltekUltimate-nanocomposite; Filtek Silorane LS-silorane; SonicFill-bulk-fill composite. All specimens were subjected to thermal cycles after that, dipped in saline for 10-mounds. After ageing, samples were immersed in a 2% methylene blue. Thus prepared, they were covered directly with gold and analyzed on SEM for assessment of marginal seal. When the SEM analysis was completed, the teeth were included into epoxy blocks and cut longitudinally on three slices for each cavity. An assessment of microleakage on stereomicroscope followed. Results were statistically analyzed. For marginal seal evaluation: F.Ultimate and F.Silorane differ statistically with more excellent results than SonicFill for marginal adaptation to the gingival margin, located entirely in the dentin. For microleakage evaluation: F.Ultimate and F.Silorane differ statistically with less microleakage than SonicFill. Based on the results obtained: a strong correlation is found between excellent results for marginal adaptation to the marginal gingival ridge and micropermeability at the direction to the axial wall. We observe a more significant influence of time at the gingival margin of the cavities. There is a significant increase in the presence of marginal fissures (p = 0.001). A significant impact of time (p < 0.000) and of the material (p < 0.000) was found in the analysis of the microleakage.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2769
Author(s):  
Jonne Oja ◽  
Lippo Lassila ◽  
Pekka K. Vallittu ◽  
Sufyan Garoushi

The aim of current in vitro research was to determine the effect of hydrothermal accelerated aging on the mechanical properties and wear of different commercial dental resin composites (RCs). In addition, the effect of expiration date of the composite prior its use was also evaluated. Five commercially available RCs were studied: Conventional RCs (Filtek Supreme XTE, G-aenial Posterior, Denfil, and >3y expired Supreme XTE), bulk-fill RC (Filtek Bulk Fill), and short fiber-reinforced RC (everX Posterior). Three-point flexural test was used for determination of ultimate flexural strength (n = 8). A vickers indenter was used for testing surface microhardness. A wear test was conducted with 15,000 chewing cycles using a dual-axis chewing simulator. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Degree of C=C bond conversion of monomers was determined by FTIR-spectrometry. The specimens were either dry stored for 48 h (37 °C) or boiled (100 °C) for 16 h before testing. Scanning electron microscopy (SEM) was used to evaluate the microstructure of each material. Data were analyzed using ANOVA (p = 0.05). Hydrothermal aging had no significant effects on the surface wear and microhardness of tested RCs (p > 0.05). While flexural strength significantly decreased after aging (p < 0.05), except for G-aenial Posterior, which showed no differences. The lowest average wear depth was found for Filtek Bulk Fill (29 µm) (p < 0.05), while everX Posterior and Denfil showed the highest wear depth values (40, 39 µm) in both conditions. Passing the expiration date for 40 months did not affect the flexural strength and wear of tested RC. SEM demonstrated a significant number of small pits on Denfil’s surface after aging. It was concluded that the effect of accelerated aging may have caused certain weakening of the RC of some brands, whereas no effect was found with one brand of RC. Thus, the accelerated aging appeared to be more dependent on material and tested material property.


2000 ◽  
Vol 649 ◽  
Author(s):  
G. Feng ◽  
A.H.W. Ngan

ABSTRACTDuring the unloading segment of nanoindentation, time dependent displacement (TDD) accompanies elastic deformation. Consequently the modulus calculated by the Oliver-Pharr scheme can be overestimated. In this paper we present evidences for the influence of the measured modulus by TDD. A modification method is also presented to correct for the effects of TDD by extrapolating the TDD law in the holding process to the beginning of the unloading process. Using this method, the appropriate holding time and unloading rate can be estimated for nanoindentation test to minimise the effects of TDD. The elastic moduli of three materials computed by the modification method are compared with the results without considering the TDD effects.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3988
Author(s):  
Fátima Ternero ◽  
Pedro M. Amaral ◽  
Jorge Cruz Fernandes ◽  
Luís Guerra Rosa

A type of disc-on-plate test methodology was used to determine the wear behavior of metallic binders employed in the manufacturing of diamond impregnated tools. The disc consists of a special circular wheel that allows the binder materials alone (i.e., without diamond, but sintered under conditions identical to those of the complete tool) to be tested against a plate of stone material under pre-determined testing conditions. The testing conditions are intended to be equivalent to those used in the industrial processes. Using plates of five types of granite and one type of marble, this work comprises wear tests of 15 different types of metallic binders and two sintering modes conducted under, at least, three different values of contact-force. The analysis of the results demonstrated that the wear of the binders can be related to their mechanical properties through an empirical expression. The larger the difference between the characteristics of the tribological pair (binder versus stone), the higher is the correlation between the experimental wear data and the values given by the empirical expression. The relationships presented in this work allow predicting the wear behavior of the binder, and therefore may help in the design process of diamond tools. There was a clear difference between the wear behavior of metallic binders when they were employed against the two main classes of stone under analysis (marble and granite).


2021 ◽  
pp. 1-25
Author(s):  
Huijie Zhang ◽  
Shuhai Liu

Abstract The tribological properties of proppant particle sliding on shale rock determine the shale gas production. This work focuses on investigating the impacts of sliding speed on the coefficient of friction (COF) and wear of the silica ball-shale rock contact, which was lubricated by water or different types of polyacrylamide (PAM) aqueous or brine solution. The experimental results show that both boundary and mixed lubrication occur under specific speed and normal load. COF and wear depth of shale rock under water are higher than those under PAM solution due to superior lubrication of PAM. COF of shale rock under PAM brine solution increases and the wear of the rock is more serious, attributed to the corrosion of shale rock and adverse effect on lubrication of PAM by brine.


2017 ◽  
Vol 28 (6) ◽  
pp. 726-730 ◽  
Author(s):  
Caio Vinícius Signorelli Grohmann ◽  
Eveline Freitas Soares ◽  
Eduardo José Carvalho Souza-Junior ◽  
William Cunha Brandt ◽  
Regina Maria Puppin-Rontani ◽  
...  

Abstract The aim in this study was to evaluate the influence of different ratio of camphorquinone/tertiary amine concentration on the flexural strength (FS), elastic modulus (EM), degree of conversion (DC), yellowing (YL), water sorption (WS) and water solubility (WSL) of experimental composites. Thus, acrylate blends were prepared with different camphorquinone (CQ) and amine (DABE) concentrations and ratios by weight: (CQ/DABE%): 0.4/0.4% (C1), 0.4/0.8% (C2), 0.6/0.6% (C3), 0.6/1.2% (C4), 0.8/0.8% (C5), 0.8/1.6% (C6), 1.0/1.0% (C7), 1.0/2.0% (C8), 1.5/1.5% (C9), 1.5/3.0% (C10). For the FS and EM, rectangular specimens (7x2x1 mm, n=10) were photo-activated by single-peak LED for 20 s and tested at Instron (0.5 mm/min). Then, the same specimens were evaluated by FTIR for DC measurement. For YL, disks (5x2 mm, n=10) were prepared, light-cured for 20 s and evaluated in spectrophotometer using the b aspect of the CIEL*a*b* system. For WS and WSL, the volume of the samples was calculated (mm³). For WS and WSL, composites disks (5x0.5 mm, n=5) were prepared. After desiccation, the specimens were stored in distilled water for 7 days and again desiccated, in order to measure the WS and WSL. Data were submitted to one-way ANOVA and Tukey’s test (5%). The groups C8, C9 and C10 showed higher DC, EM and YL means, compared to other composites. Therefore, the FS and WS values were similar among all groups. Also, C1, C2 and C3 presented higher WSL in 7 days, compared to other composites. In general, higher concentrations of camphorquinone promoted higher physical-mechanical properties; however, inducing higher yellowing effect for the experimental composites


Friction ◽  
2021 ◽  
Author(s):  
Meigui Yin ◽  
Chaise Thibaut ◽  
Liwen Wang ◽  
Daniel Nélias ◽  
Minhao Zhu ◽  
...  

AbstractThe impact-sliding wear behavior of steam generator tubes in nuclear power plants is complex owing to the dynamic nature of the mechanical response and self-induced tribological changes. In this study, the effects of impact and sliding velocity on the impact-sliding wear behavior of a 2.25Cr1Mo steel tube are investigated experimentally and numerically. In the experimental study, a wear test rig that can measure changes in the impact and friction forces as well as the compressive displacement over different wear cycles, both in real time, is designed. A semi-analytical model based on the Archard wear law and Hertz contact theory is used to predict wear. The results indicate that the impact dynamic effect by the impact velocity is more significant than that of the sliding velocity, and that both velocities affect the friction force and wear degree. The experimental results for the wear depth evolution agree well with the corresponding simulation predictions.


Sign in / Sign up

Export Citation Format

Share Document