scholarly journals Space Flight Effects on Antioxidant Molecules in Dry Tardigrades: The TARDIKISS Experiment

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Angela Maria Rizzo ◽  
Tiziana Altiero ◽  
Paola Antonia Corsetto ◽  
Gigliola Montorfano ◽  
Roberto Guidetti ◽  
...  

The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely,Paramacrobiotus richtersiandRamazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research.

Author(s):  
Diana M. AYUKAEVA ◽  
Fedor A. VORONIN ◽  
Mikhail A. POLUARSHINOV ◽  
Mikhail A. KHARCHIKOV

The paper discusses the process of integrating scientific equipment into the Russian Segment of the International Space Station (ISS RS) to conduct space experiment using the ISS IS information and control system. The paper addresses the stages in ground processing of scientific equipment that are critical for its successful operation after delivery to the ISS RS: tests on the hardware (vibration and hydraulic tests, electromagnetic compatibility tests, incoming inspection), development of the software for the equipment using ground debugging facility and conducting integrated tests in the checkout facility. It points out the need to update the existing stages of ground preparations for experiments to reduce the hardware ground processing time. Taking as examples the space experiment Terminator and experiments conducted using cargo transportation spacecraft Progress, the paper resents results obtained through the use of the described approach. Key words: information and control system, scientific equipment, space experiment, International Space Station, logistics spacecraft Progress, microgravity.


Author(s):  
Masahiro Kawaji

High quality semi-conductor and protein crystals can be grown in space by utilizing the microgravity environment in which natural convection and sedimentation effects are suppressed. But some vibrations exist on space platforms such as Space Shuttle and International Space Station that can induce crystal and fluid motions, affecting the quality of the crystals grown in space. Since the effects of small vibrations (called g-jitter) on crystal growth are not yet precisely known in space, experimental and theoretical investigations are being conducted to better understand the vibration effects on the motion of protein crystals and solid particles in liquid-filled cells. Another topic under investigation is the operation of pulsating heat pipes under microgravity. A recent experiment performed on a parabolic airplane has shown the positive effect of reduced gravity on the pulsating motion of vapour-liquid two-phase flow and heat transport in pulsating heat pipes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hong Phuong Nguyen ◽  
Phuong Hoa Tran ◽  
Kyu-Sung Kim ◽  
Su-Geun Yang

AbstractAstronauts returning from space shuttle missions or the International Space Station have been diagnosed with various health problems such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance including visual acuity, altered metabolic and nutritional status, and immune system dysregulation. These health issues are associated with oxidative stress caused by a microgravity environment. Mitochondria are a source of reactive oxygen species (ROS). However, the molecular mechanisms through which mitochondria produce ROS in a microgravity environment remain unclear. Therefore, this review aimed to explore the mechanism through which microgravity induces oxidative damage in mitochondria by evaluating the expression of genes and proteins, as well as relevant metabolic pathways. In general, microgravity-induced ROS reduce mitochondrial volume by mainly affecting the efficiency of the respiratory chain and metabolic pathways. The impaired respiratory chain is thought to generate ROS through premature electron leakage in the electron transport chain. The imbalance between ROS production and antioxidant defense in mitochondria is the main cause of mitochondrial stress and damage, which leads to mitochondrial dysfunction. Moreover, we discuss the effects of antioxidants against oxidative stress caused by the microgravity environment space microgravity in together with simulated microgravity (i.e., spaceflight or ground-based spaceflight analogs: parabolic flight, centrifugal force, drop towers, etc.). Further studies should be taken to explore the effects of microgravity on mitochondrial stress-related diseases, especially for the development of new therapeutic drugs that can help increase the health of astronauts on long space missions.


2021 ◽  
Vol 2 ◽  
Author(s):  
Wayne L. Nicholson ◽  
Patricia Fajardo-Cavazos ◽  
Caleb Turner ◽  
Taylor M. Currie ◽  
Geoffrey Gregory ◽  
...  

The major factor influencing the behavior of microbes growing in liquids in space is microgravity. We recently measured the transcriptomic response of the Gram-positive bacterium Bacillus subtilis to the microgravity environment inside the International Space Station (ISS) in spaceflight hardware called Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs). In two separate experiments in the ISS, dubbed BRIC-21 and BRIC-23, we grew multiple replicates of the same B. subtilis strain in the same hardware, growth medium, and temperature with matching ground control samples (npj Micrograv. 5:1.2019, doi: 10.1038/s41526-018-0061-0). In both experiments we observed similar responses of the transcriptome to spaceflight. However, we also noted that the liquid cultures assumed a different configuration in microgravity (a toroidal shape) compared with the ground control samples (a flat disc shape), leading us to question whether the transcriptome differences we observed were a direct result of microgravity, or a secondary result of the different liquid geometries of the samples affecting, for example, oxygen availability. To mitigate the influence of microgravity on liquid geometry in BRIC canisters, we have designed an insert to replace the standard 60-mm Petri dish in BRIC-PDFU or BRIC-LED sample compartments. In this design, liquid cultures are expected to assume a more disk-like configuration regardless of gravity or its absence. We have: (i) constructed a prototype device by 3D printing; (ii) evaluated different starting materials, treatments, and coatings for their wettability (i.e., hydrophilicity) using contact angle measurements; (iii) confirmed that the device performs as designed by drop-tower testing and; (iv) performed material biocompatibility studies using liquid cultures of Bacillus subtilis and Staphylococcus aureus bacteria. Future microgravity testing of the device in the ISS is planned.


Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


2010 ◽  
Vol 80 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pei-Min Chao ◽  
Wan-Hsuan Chen ◽  
Chun-Huei Liao ◽  
Huey-Mei Shaw

Conjugated linoleic acid (CLA) is a collective term for the positional and geometric isomers of a conjugated diene of linoleic acid (C18:2, n-6). The aims of the present study were to evaluate whether levels of hepatic α-tocopherol, α-tocopherol transfer protein (α-TTP), and antioxidant enzymes in mice were affected by a CLA-supplemented diet. C57BL/6 J mice were divided into the CLA and control groups, which were fed, respectively, a 5 % fat diet with or without 1 g/100 g of CLA (1:1 mixture of cis-9, trans-11 and trans-10, cis-12) for four weeks. α-Tocopherol levels in plasma and liver were significantly higher in the CLA group than in the control group. Liver α-TTP levels were also significantly increased in the CLA group, the α-TTP/β-actin ratio being 2.5-fold higher than that in control mice (p<0.01). Thiobarbituric acid-reactive substances were significantly decreased in the CLA group (p<0.01). There were no significant differences between the two groups in levels of three antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). The accumulation of liver α-tocopherol seen with the CLA diet can be attributed to the antioxidant potential of CLA and the ability of α-TTP induction. The lack of changes in antioxidant enzyme protein levels and the reduced lipid peroxidation in the liver of CLA mice are due to α-tocopherol accumulation.


2014 ◽  
Vol 1 (1) ◽  
pp. 31-36 ◽  
Author(s):  
O. Zhukorskiy ◽  
O. Gulay ◽  
V. Gulay ◽  
N. Tkachuk

Aim. To determine the response of the populations of Erysipelothrix rhusiopathiae and Leptospira interrogans pathogenic microorganisms to the impact of broadleaf cattail (Thypha latifolia) root diffusates. Methods. Aqueous solutions of T. latifolia root diffusates were sterilized by vacuum fi ltration through the fi lters with 0.2-micron pore diameter. The experimental samples contained cattail secretions, sterile water, and cultures of E. rhusiopathiae or L. interrogans. The same amount of sterile water, as in the experimental samples, was used for the purpose of control, and the same quantity of microbial cultures was added in it. After exposure, the density of cells in the experimental and control samples was determined. Results. Root diffusates of T. latifolia caused an increase in cell density in the populations of E. rhusiopathiae throughout the whole range of the studied dilutions (1:10–1:10000). In the populations of the 6 studied serological variants of L. interrogans spirochetes (pomona, grippotyphosa, copenhageni, kabura, tarassovi, canicola), the action of broadleaf cattail root diffusates caused the decrease in cell density. A stimulatory effect was marked in the experimental samples of the pollonica serological variant of leptospira. Conclusions. The populations of E. rhusiopathiae and L. interrogans pathogenic microorganisms respond to the allelopathic effect of Thypha latifolia by changing the cell density. The obtained results provide the background to assume that broadleaf cattail thickets create favorable conditions for the existence of E. rhusiopathiae pathogen bacteria. The reduced cell density of L. interrogans in the experimental samples compared to the control samples observed under the infl uence of T. latifolia root diffusates suggests that reservoirs with broadleaf cattail thickets are marked by the unfavorable conditions for the existence of pathogenic leptospira (except L. pollonica).


Sign in / Sign up

Export Citation Format

Share Document