scholarly journals Synergistic Activations ofREG IαandREG IβPromoters by IL-6 and Glucocorticoids through JAK/STAT Pathway in Human PancreaticβCells

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Akiyo Yamauchi ◽  
Asako Itaya-Hironaka ◽  
Sumiyo Sakuramoto-Tsuchida ◽  
Maiko Takeda ◽  
Kiyomi Yoshimoto ◽  
...  

Reg(Regenerating gene) gene was originally isolated from rat regenerating islets and its encoding protein was revealed as an autocrine/paracrine growth factor forβcells. RatReggene is activated in inflammatory conditions forβcell regeneration. In human, although five functionalREGfamily genes (REG Iα, REG Iβ, REG III, HIP/PAP, andREG IV) were isolated, their expressions inβcells under inflammatory conditions remained unclear. In this study, we found that combined addition of IL-6 and dexamethasone (Dx) inducedREG IαandREG Iβexpression in human 1.1B4βcells. Promoter assay revealed that a signal transducer and activator of transcription- (STAT-) binding site in each promoter ofREG Iα(TGCCGGGAA) andREG Iβ(TGCCAGGAA) was essential for the IL-6+Dx-induced promoter activation. A Janus kinase 2 (JAK2) inhibitor significantly inhibited the IL-6+Dx-inducedREG IαandREG Iβtranscription. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that IL-6+Dx stimulation increased STAT3 binding to theREG Iαpromoter. Furthermore, small interfering RNA-mediated targeting of STAT3 blocked the IL-6+Dx-induced expression ofREG IαandREG Iβ. These results indicate that the expression ofREG IαandREG Iβshould be upregulated in humanβcells under inflammatory conditions through the JAK/STAT pathway.

1998 ◽  
Vol 187 (5) ◽  
pp. 675-683 ◽  
Author(s):  
Daniel M. Miller ◽  
Brian M. Rahill ◽  
Jeremy M. Boss ◽  
Michael D. Lairmore ◽  
Joan E. Durbin ◽  
...  

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to persist for decades in its host. HCMV has evolved protean countermeasures for anti-HCMV cellular immunity that facilitate establishment of persistence. Recently it has been shown that HCMV inhibits interferon γ (IFN-γ)–stimulated MHC class II expression, but the mechanism for this effect is unknown. IFN-γ signal transduction (Jak/Stat pathway) and class II transactivator (CIITA) are required components for IFN-γ–stimulated MHC class II expression. In this study, we demonstrate that both a clinical isolate and a laboratory strain of HCMV inhibit inducible MHC class II expression at the cell surface and at RNA level in human endothelial cells and fibroblasts. Moreover, reverse transcriptase polymerase chain reaction and Northern blot analyses demonstrate that neither CIITA nor interferon regulatory factor 1 are upregulated in infected cells. Electrophoretic mobility shift assays reveal a defect in IFN-γ signal transduction, which was shown by immunoprecipitation to be associated with a striking decrease in Janus kinase 1 (Jak1) levels. Proteasome inhibitor studies with carboxybenzyl-leucyl-leucyl-leucine vinyl sulfone suggest an HCMV-associated enhancement of Jak1 protein degradation. This is the first report of a mechanism for the HCMV-mediated disruption of inducible MHC class II expression and a direct virus-associated alteration in Janus kinase levels. These findings are yet another example of the diverse mechanisms by which HCMV avoids immunosurveillance and establishes persistence.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1527 ◽  
Author(s):  
Ji-Hyang Kim ◽  
Hack Sun Choi ◽  
Su-Lim Kim ◽  
Dong-Sun Lee

Cancer stem cells (CSCs) have unique properties, including self-renewal, differentiation, and chemoresistance. In this study, we found that p21-activated kinase (PAK1) inhibitor (Group I, PAK inhibitor, IPA-3) and inactivator (ivermectin) treatments inhibit cell proliferation and that tumor growth of PAK1-knockout cells in a mouse model is significantly reduced. IPA-3 and ivermectin inhibit CSC formation. PAK1 physically interacts with Janus Kinase 2 (JAK2), and JAK2 inhibitor (TG101209) treatment inhibits mammosphere formation and reduces the nuclear PAK1 protein level. PAK1 interacts with signal transducer and activator of transcription 3 (Stat3), and PAK1 and Stat3 colocalize in the nucleus. We show through electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and reporter assays that the PAK1/Stat3 complex binds to the IL-6 promoter and regulates the transcription of the IL-6 gene. Inhibition of PAK1 and JAK2 in mammospheres reduces the nuclear pStat3 and extracellular IL-6 levels. PAK1 inactivation inhibits CSC formation by decreasing pStat3 and extracellular IL-6 levels. Our results reveal that JAK2/PAK1 dysregulation inhibits the Stat3 signaling pathway and CSC formation, the PAK1/Stat3 complex regulates IL-6 gene expression, PAK1/Stat3 signaling regulates CSC formation, and PAK1 may be an important target for treating breast cancer.


Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 6037-6045 ◽  
Author(s):  
Gauthami Jalagadugula ◽  
Guangfen Mao ◽  
Gurpreet Kaur ◽  
Lawrence E. Goldfinger ◽  
Danny N. Dhanasekaran ◽  
...  

Abstract Mutations in transcription factor RUNX1 are associated with familial platelet disorder, thrombocytopenia, and predisposition to leukemia. We have described a patient with thrombocytopenia and impaired agonist-induced platelet aggregation, secretion, and glycoprotein (GP) IIb-IIIa activation, associated with a RUNX1 mutation. Platelet myosin light chain (MLC) phosphorylation and transcript levels of its gene MYL9 were decreased. Myosin IIA and MLC phosphorylation are important in platelet responses to activation and regulate thrombopoiesis by a negative regulatory effect on premature proplatelet formation. We addressed the hypothesis that MYL9 is a transcriptional target of RUNX1. Chromatin immunoprecipitation (ChIP) using megakaryocytic cells revealed RUNX1 binding to MYL9 promoter region −729/−542 basepairs (bp), which contains 4 RUNX1 sites. Electrophoretic mobility shift assay showed RUNX1 binding to each site. In transient ChIP assay, mutation of these sites abolished binding of RUNX1 to MYL9 promoter construct. In reporter gene assays, deletion of each RUNX1 site reduced activity. MYL9 expression was inhibited by RUNX1 short interfering RNA (siRNA) and enhanced by RUNX1 overexpression. RUNX1 siRNA decreased cell spreading on collagen and fibrinogen. Our results constitute the first evidence that the MYL9 gene is a direct target of RUNX1 and provide a mechanism for decreased platelet MYL9 expression, MLC phosphorylation, thrombocytopenia, and platelet dysfunction associated with RUNX1 mutations.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 910-910
Author(s):  
Angela C Court Recart ◽  
Daniel J Goff ◽  
Anil Sadarangani ◽  
Cayla N Mason ◽  
Alice Y. Shih ◽  
...  

Abstract Abstract 910 In blast crisis transformation of CML (BC CML), the leukemia stem cells (LSC), via the acquisition of both enhanced survival and self-renewal capacity, become increasingly resistant to BCR-ABL targeted tyrosine kinase inhibition and thus often contribute to relapse after treatment, pointing to the need for alternative therapeutic strategies and a better understanding of the molecular mechanisms underlying disease progression. Janus kinase 2 (JAK2) plays an important role in BCR–ABL + cell survival and has profound effects on self-renewal and lineage commitment of normal and leukemic hematopoietic stem cells, through the activation of the transcription factor signal transducer and activator of transcription 5 (STAT5). To determine if JAK/STAT signaling pathway activation is related to CML progression, LSC from human Chronic Phase (CP CML) and BC CML samples were sorted using FACS Aria (Lin-CD34+CD38+) and analyzed using splice-isoform specific q-RT-PCR. Our results showed that, compared to CP CML, BC LSC harbor enhanced mRNA expression of BCR-ABL, JAK2 and STAT5A isoforms, confirming that progression of CP to BC, in CML LSC, is marked by activation of JAK/STAT pathway. Therefore, we investigated the response of BC CML LSC to a clinical grade JAK2 inhibitor, SAR302503 (Sanofi, Cambridge, MA) alone or in combination with a potent BCR-ABL inhibitor, dasatinib, in vivo. After two weeks of treatment, RAG2−/−gc−/− mice intrahepatic transplanted with BC LSC, showed a significant (p<0.05) reduction of engraftment levels, after combination therapy with SAR302503 and dasatinib, compared to vehicle treated mice, in four different patient samples. In all the hematopoietic tissues analyzed, SAR302503 alone (60 mg/kg/b.i.d.) did not have an effect reducing the leukemic burden. Dasatinib alone (50mg/kg/day) reduced the LSC population in the liver, spleen, and peripheral blood, but the bone marrow retained a significant percentage of BC LSC. However, combination treatment was able to reduce the LSC in the BM significantly (p=0.0006) compared to dasatinib alone. To test whether the combination therapy can impair self-renewal capacity of the BC CML LSC in vivo, we immunomagnetic bead selected CD34+ cells from BM and spleens of treated mice, and serially transplanted an equal number into secondary recipients. We observed a significant (p<0.0001) reduction of engraftment of LSC on the mice transplanted with combination treated cells compared with vehicle treated cells. Interestingly, secondary mice transplanted with cells treated with dasatinib showed 37.5% engraftment in the spleen and 46.4% in BM, while the level of engraftment for mice transplanted with combination treatment was only 1% and 3% for spleen and BM, respectively. Moreover, mice serially transplanted with combination treated cells, had a significant (p=0.0002) increased survival time. BC CML LSC are enriched for the granulocyte macrophage progenitor (GMP) population, which has been shown to harbor LSC serial transplantation potential. Our results showed that secondary recipient transplanted with combination treated cells, presented a significantly lower proportion of the GMP population, compared with vehicle (p<0.0001) and dasatinib (p=0.02) treated cells. Together, these results suggest that the combination therapy, using a Jak2 inhibitor with a BCR-ABL inhibitor, can abolish LSC self-renewal capacity and thereby potentially prevent relapse. Validation studies, using nanoproteomic analysis, confirmed that LSC sorted cells from mice treated with SAR302503 had lower expression levels of p-JAK2 (Tyr 1007-08) and p-STAT5A (Tyr 694) compared with vehicle treated mice (51% and 64% of reduction, respectively), while no changes are observed for total JAK2 protein or B2M between both conditions. Full transcriptome sequencing and q-RT-PCR analysis, on sorted CML LSC from mice treated with SAR302503 in combination with dasatinib, confirmed that STAT5A specific isoforms decresed after treatment, suggesting JAK/STAT pathway could be used as biomarker of response and could explain the impairment of self-renewal in the combination therapy. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (8) ◽  
pp. 797
Author(s):  
Maaria Palmroth ◽  
Hanna Viskari ◽  
Mikko R. J. Seppänen ◽  
Salla Keskitalo ◽  
Anniina Virtanen ◽  
...  

Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional coregulator that has an important role in the regulation of the immune response. IRF2BP2 has been associated with the Janus kinase (JAK)—signal transducers and activators of transcription (STAT) pathway, but its exact role remains elusive. Here, we identified a novel clinical variant, IRF2BP2 c.625_665del, from two members of a family with inflammatory conditions and investigated the function of IRF2BP2 and c.625_665del mutation in JAK–STAT pathway activation and inflammatory signaling. The levels of constitutive and cytokine-induced phosphorylation of STATs and total STAT1 in peripheral blood monocytes, T cells, and B cells from the patients and four healthy controls were measured by flow cytometry. Inflammation-related gene expression was studied in peripheral blood mononuclear cells using direct digital detection of mRNA (NanoString). Finally, we studied the relationship between IRF2BP2 and STAT1 activation using a luciferase reporter system in a cell model. Our results show that patients having the IRF2BP2 c.625_665del mutation presented overexpression of STAT1 protein and increased constitutive activation of STAT1. In addition, interferon-induced JAK–STAT signaling was upregulated, and several interferon-inducible genes were overexpressed. Constitutive phosphorylation of STAT5 was also found to be upregulated in CD4+ T cells from the patients. Using a cell model, we show that IRF2BP2 was needed to attenuate STAT1 transcriptional activity and that IRF2BP2 c.625_665del mutation failed in this. We conclude that IRF2BP2 has an important role in suppressing immune responses elicited by STAT1 and STAT5 and suggest that aberrations in IRF2BP2 can lead to abnormal function of intrinsic immunity.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


Author(s):  
Weiguo Dong ◽  
Wenqing Ren ◽  
Xuan Wang ◽  
He Yuke

Abstract MicroRNA319a (miR319a) controls cell division arrest in plant leaves by inhibiting the expression of TCP (TEOSINTE BRANCHED 1/CYCLOIDEA/PCF) family genes. However, it is unclear whether miR319a influences infections by necrotrophic pathogens and host susceptibility. In this study, we revealed that miR319a affected plant resistance to stem rot disease of Sclerotinia sclerotiorum. In the plants of Brassica rapa infected with S. sclerotiorum, miR319a levels increased while expression levels of several BraTCP genes significantly decreased compared with those of the uninfected plants. The overexpression of BraMIR319a in B. rapa increased the susceptibility of the plants to S. sclerotiorum and aggravated stem rot disease, whereas the overexpression of BraTCP4-1 promoted the plant resistance. Our RNA-sequencing data revealed a potential relationship between miR319a and pathogen-related WRKY genes. Chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA) and reporter transaction assay showed that BraTCP4-1 was bound to the promoters of WRKY75, WRKY70, and WRKY33 genes and directly activated these pathogen-related genes. Moreover, the expression levels of WRKY75, WRKY70, and WRKY33 in the plants overexpressing BraMIR319a declined significantly whereas those of the plants overexpressing BraTCP4-1 increased significantly. These results suggest that miR319a and its targeted gene BraTCP4 regulate stem rot resistance through pathways of WRKY genes.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1059
Author(s):  
Yu-Tsai Lin ◽  
Wei-Chih Chen ◽  
Ming-Hsien Tsai ◽  
Jing-Ying Chen ◽  
Chih-Yen Chien ◽  
...  

Janus kinase 2 (JAK2) is a member of the JAK family that transduces cytokine-mediated signals via the JAKs/STATs (signal transducer and activator of transcription proteins) pathway, which plays an important role in many inflammatory diseases. This study investigates the association of p-JAK2 and JAK2-associated cytokines from nasal polyp (NP) tissue with disease severity, and evaluates the p-JAK2-mediated STATs in chronic rhinosinusitis (CRS) with NP. Sixty-one CRSwNP patients with nasal polyps undergoing endoscopic sinus surgery were enrolled, while the turbinate tissues from 26 nasal obstruction patients were examined as the control group. Elevated levels of p-JAK2 were detected in CRSwNP, and significantly correlated with scores of disease severity (LMK-CT, TPS, and SNOT-22). Expressions of the JAK2-associated cytokines, such as IL-5, IL-6, IL-13, G-CSF, and IFN-γ were significantly higher in CRSwNP than in the controls, while the levels of IL-5, IL-6, IL-13, or G-CSF had positive correlation with scores of disease severity. Moreover, markedly increased expression of p-STAT3 in CRSwNP was observed relative to the control. Taken together, these data showed that the JAK2-associated cytokines including IL-6 and G-CSF may stimulate JAK2 phosphorylation to activate p-STAT3, indicating an association with disease severity and supporting its development of JAK2 inhibitor as a potential therapeutic agent for CRS.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4060-4066 ◽  
Author(s):  
Maria Fiammetta Romano ◽  
Annalisa Lamberti ◽  
Rita Bisogni ◽  
Corrado Garbi ◽  
Antonio M. Pagnano ◽  
...  

Abstract We investigated the involvement of NF-κB/Rel transcription factors that reportedly can inhibit apoptosis in various cell types in the antiapoptotic mechanism of the cytoprotectant amifostine. In the nontumorigenic murine myeloid progenitor 32D cells incubated with amifostine, we detected a reduction of the IκB cytoplasmic levels by Western blotting and a raising of nuclear NF-κB/Rel complexes by electrophoretic mobility shift assay. Amifostine inhibited by more than 30% the growth factor deprivation-induced apoptosis, whereas its effect failed when we blocked the NF-κB/Rel activity with an NF-κB/Rel-binding phosphorothioate decoy oligodeoxynucleotide. In human cord blood CD34+ cells, the NF-κB/Rel p65 subunit was detectable (using immunofluorescence analysis) mainly in the cytoplasm in the absence of amifostine, whereas its presence was appreciable in the nuclei of cells incubated with the cytoprotectant. In 4 CD34+ samples incubated for 3 days in cytokine-deficient conditions, cell apoptosis was reduced by more than 30% in the presence of amifostine (or amifostine plus a control oligo); the effect of amifostine was abolished in cultures with the decoy oligo. These findings indicate that the inhibition of hematopoietic progenitor cell apoptosis by amifostine requires the induction of NF-κB/Rel factors and that the latter can therefore exert an antiapoptotic activity in the hematopoietic progenitor cell compartment. Furthermore, the identification of this specific mechanism underlying the survival-promoting activity of amifostine lends support to the possible use of this agent in apoptosis-related pathologies, such as myelodysplasias.


1993 ◽  
Vol 13 (7) ◽  
pp. 3999-4010 ◽  
Author(s):  
M Merika ◽  
S H Orkin

GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.


Sign in / Sign up

Export Citation Format

Share Document