scholarly journals DiarrheagenicEscherichia coliPhylogroups Are Associated with Antibiotic Resistance and Duration of Diarrheal Episode

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Susan Mosquito ◽  
Maria J. Pons ◽  
Maribel Riveros ◽  
Joaquim Ruiz ◽  
Theresa J. Ochoa

Conventionally, inEscherichia coli, phylogenetic groups A and B1 are associated with commensal strains while B2 and D are associated with extraintestinal strains. The aim of this study was to evaluate diarrheagenic (DEC) and commensalE. coliphylogeny and its association with antibiotic resistance and clinical characteristics of the diarrheal episode. Phylogenetic groups and antibiotic resistance of 369E. colistrains (commensal strains and DEC from children with or without diarrhea) isolated from Peruvian children <1 year of age were determined by a Clermont triplex PCR and Kirby-Bauer method, respectively. The distribution of the 369E. colistrains among the 4 phylogenetic groups was A (40%), D (31%), B1 (21%), and B2 (8%). DEC-control strains were more associated with group A while DEC-diarrhea strains were more associated with group D(P<0.05). There was a tendency(P=0.06)for higher proportion of persistent diarrhea (≥14 days) among severe groups (B2 and D) in comparison with nonsevere groups (A and B1). Strains belonging to group D presented significantly higher percentages of multidrug resistance than the rest of the groups(P>0.01). In summary, DEC-diarrhea strains were more associated with group D than strains from healthy controls.

Author(s):  
Hossein Norouzian ◽  
Mohammad Katouli ◽  
Nader Shahrokhi ◽  
Sharam Sabeti ◽  
Mohammad Pooya ◽  
...  

Background and Objectives: B2 and D have been mentioned as the most common phylogenetic groups among uropatho- genic Escherichia coli. However, there is still controversy about the importance of these phylo-groups. This study was con- ducted to investigate the probable relation between these groups and antibiotic resistance patterns of E. coli isolates derived from urine and feces of the patients with acute or recurrent UTI. Materials and Methods: 10 isolates were recovered from urine and feces samples of patients with different phases of UTI in whom E. coli was causative pathogen. Biochemical fingerprinting was performed to classify the isolates and select their appropriate representatives. Phylogenetic grouping was performed using multiplex PCR, and antibiotic resistance was deter- mined by disk diffusion method. Results: Five-hundred-sixty E. coli isolates were derived from 56 UTI patients (27 acute, 29 recurrent). Among them, 261 isolates were selected using biochemical fingerprinting. All the isolates were sensitive to imipenem and nitrofurantoin. Com- pared to other phylo-groups, the isolates in group D showed considerably different frequencies in acute vs. recurrent phase of UTI, in urine vs. stool samples, in males vs. females, and in- vs. out-patients. They were more resistant to the antibiotics (except norfloxacin), and in contrast to others, this was seen more in acute UTI, especially in urine samples. Multi-drug resistance pattern was also meaningfully higher in group D. Conclusion: Although phylo-groups B2 and D of E. coli bacteria are more responsible for UTI, group D isolates seem to be more resistant and probably more virulent, even than the ones from group B2.


Author(s):  
Somayeh Bakhtiari ◽  
Hassan Mahmoudi ◽  
Sara Khosravi Seftjani ◽  
Mohammad Ali Amirzargar ◽  
Sima Ghiasvand ◽  
...  

Background and Objectives: Escherichia coli is the most common causative agent of urinary tract infections (UTIs) in 90-80% of patients in all age groups. Phylogenetic groups of these bacteria are variable and the most known groups are A, B1, B2 and D. The present study aimed to evaluate the phylogenetic groups of E. coli samples obtained from UTIs and their relation with antibiotic resistance patterns of isolates. Materials and Methods: In this study 113 E. coli isolates were isolated from distinct patients with UTIs referred to Hamadan hospitals. After biochemical and molecular identification of the isolates, typing and phylogenetic grouping of E. coli strains were performed using multiplex PCR targeting chu, yjaA and TSPE4.C2 genes. The anti-microbial susceptibility of the isolates to amikacin, ampicillin, trimethoprim-sulfamethoxazole, amoxicillin/clavulanic acid, ciprofloxacin, cefotaxime, imipenem, aztreonam, gentamicin, meropenem, nitrofurantoin, nalidixic acid and cefazolin was determined using disk diffusion method. Results: Of 113 isolates, 50 (44.2%), 35 (31%), 23 (20.4%) and 5 (4.4%) of samples belonged to group B2, group D, group A and group B1 phylogenetic groups respectively. All isolates were susceptible to meropenem, imipenem (100%), followed by amikacin (99.1%). The highest resistance rates were observed against ampicillin (74.3%) and nalidixic acid (70.8%). Correlation between phylogenetic groups and antibiotic susceptibilities was significant only with co-amoxiclav (P = 0.006), which had the highest resistance in phylogenetic group A. Conclusion: Prevalence of different phylogroup and resistance associated with them in E. coli samples could be variable in each region. Therefore, investigating of these items in E. coli infections, could be more helpful in selecting the appropriate antibiotic treatment and epidemiological studies.


2000 ◽  
Vol 68 (3) ◽  
pp. 1116-1124 ◽  
Author(s):  
Karen Amor ◽  
David E. Heinrichs ◽  
Emilisa Frirdich ◽  
Kim Ziebell ◽  
Roger P. Johnson ◽  
...  

ABSTRACT In the lipopolysaccharides of Escherichia coli there are five distinct core oligosaccharide (core OS) structures, designated K-12 and R1 to R4. The objective of this work was to determine the prevalences of these core OS types within the species. Unique sequences in the waa (core OS biosynthesis) gene operon were used to develop a PCR-based system that facilitated unequivocal determination of the core OS types in isolates of E. coli. This system was applied to the 72 isolates in the E. coli ECOR collection, a compilation of isolates that is considered to be broadly representative of the genetic diversity of the species. Fifty (69.4%) of the ECOR isolates contained the R1 core OS, 8 (11.1%) were representatives of R2, 8 (11.1%) were R3, 2 (2.8%) were R4, and only 4 (5.6%) were K-12. R1 is the only core OS type found in all four major phylogenetic groups (A, B1, B2, and D) in the ECOR collection. Virulent extraintestinal pathogenic E. coli isolates tend to be closely related to group B2 and, to a lesser extent, group D isolates. All of the ECOR representatives from the B2 and D groups had the R1 core OS. In contrast, commensal E. coli isolates are more closely related to group A, which contains isolates representing each of the five core OS structures. R3 was the only core OS type found in 38 verotoxigenic E. coli (VTEC) isolates from humans and cattle belonging to the common enterohemorrhagic E. coliserogroups O157, O111, and O26. Although isolates from other VTEC serogroups showed more core OS diversity, the R3 type (83.1% of all VTEC isolates) was still predominant. When non-VTEC commensal isolates from cattle were analyzed, it was found that most possessed the R1 core OS type.


2012 ◽  
Vol 60 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Domonkos Sváb ◽  
István Tóth

Long polar fimbriae (Lpf) are recently discovered adhesins and increasingly important genetic markers of pathogenicEscherichia colistrains. The presence and genotype diversity of Lpf operons was screened in a collection of 97Escherichia coliO157 strains representing different pathotypes, isolated from healthy cattle (n = 43) and human patients (n = 54) in several countries. Individual structural genes of Lpf were scanned by PCR, and allelic variants were detected with a recently developed typing scheme. Ninety-five strains carried at least one whole Lpf operon (geneslpfABCDand/orlpfABCDE). The 64 enterohaemorrhagic (EHEC) and 24 enteropathogenic (EPEC) strains all carried two Lpf operons, allele 3 oflpfA1and allele 2 oflpfA2, a combination characteristic of the O157:H7/NM serotype. Out of the 9 bovine atypical (AT;stx-, eae-) strains, 7 carried one complete Lpf operon, allele 1 oflpfA2. The atypical strains belonged to main phylogenetic groups A and B1, while the EHEC and EPEC strains were from group D. Lpf variants carried by the 72 strains of theEscherichia coliReference Collection (ECOR) were determined with the same typing scheme. Alleles were detected in 25 strains, of which 6 were found negative for the respective Lpf operons in earlier studies. The marker value of the Lpf allelic combination for the O157:H7/NM serotype was confirmed, and further evidence was given for the presence of at least two different genetic lineages of atypical bovineE. coliO157 strains.


1996 ◽  
Vol 117 (1) ◽  
pp. 203-211 ◽  
Author(s):  
M. Muñoz ◽  
M. Álvarez ◽  
I. Lanza ◽  
P. Cármenes

SummaryFaeces samples from diarrhoeic and non-diarrhoeic lambs and goat kids aged 1–45 days were examined for enteric pathogens.Cryptosporidium parvumwas detected in both diarrhoeic lambs (45%) and goat kids (42%) but not in non-diarrhoeic animals. F5+(K99+) and/or F41+Escherichia colistrains were isolated from 26% and 22% of the diarrhoeic lambs and goat kids, respectively, although these strains, which did not produce enterotoxins ST I or LT I, were found with similar frequencies in non-diarrhoeic animals. A F5−F41−ST I+E. colistrain was isolated from a diarrhoeic lamb (0·6%). VerotoxigenicE. coliwas isolated from both diarrhoeic and non-diarrhoeic lambs (4·1% and 8·2%, respectively) and there was no association between infection and diarrhoea. The prevalence of group A rotavirus infection in diarrhoeic lambs was very low (2·1%). Groups A and B rotaviruses were detected in three (8·1%) and five (13·5%) diarrhoeic goat kids from two single outbreaks. Group C rotaviruses were detected in four non-diarrhoeic goat kids. An association of diarrhoea and infection was demonstrated only for group B rotavirus.Clostridium perfringenswas isolated from 10·8% of the diarrhoeic goat kids but not from non-diarrhoeic goat kids or lambs.Salmonella arizonaewas isolated from a diarrhoeic goat kid (2·7%) and the clinical characteristics of the outbreaks where these two latter enteropathogens were found different from the rest. Picobirnaviruses were detected in a diarrhoeic lamb. No coronaviruses were detected using a bovine coronavirus ELISA. No evidence was found of synergistic effect between the agents studied. Enteric pathogens were not found in four (8·7%) and three (20%) outbreaks of diarrhoea in lambs and goat kids, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mourouge Saadi Alwash ◽  
Hawraa Mohammed Al-Rafyai

Surface water contamination remains a major worldwide public health concern and may contribute to the dissemination of antibiotic-resistant bacteria. The Al-Hillah River in the city of Babylon Province, Iraq, diverts flows from the Euphrates River. Because of its importance in irrigation and population density, it faces several forced and unforced changes due to anthropogenic activities. To evaluate water quality, water samples were collected from three sites with different anthropogenic pressures along the Al-Hillah River. These samples were subjected to bacteriological analyses, i.e., total coliforms, Escherichia coli, and faecal enterococci. The phylogenetic groups of the E. coli isolates (n = 61) were typed by rapid PCR-based analyses. Representatives of each isolate were tested phenotypically for resistance to six classes of antibiotics and characterized according to their phylogenetic groups. The results demonstrated the highest resistance levels were to β-lactam antibiotics, followed by fosfomycin and aminoglycosides. Escherichia coli isolates belonging to phylogenetic groups A and B2 were the most common and were characterized by a higher prevalence of antibiotic resistance. This study is important for understanding the current conditions of the Al-Hillah River, as the data reveal a high prevalence of multiresistance among E. coli isolates circulating at the three sampling sites.


2010 ◽  
Vol 55 (3) ◽  
pp. 1270-1273 ◽  
Author(s):  
Typhaine Billard-Pomares ◽  
Olivier Tenaillon ◽  
Hervé Le Nagard ◽  
Zoé Rouy ◽  
Stéphane Cruveiller ◽  
...  

ABSTRACTThe sequence of pTN48, a plasmid of the FII-FIB replicon type that encodes a CTX-M-14 enzyme in anEscherichia colistrain of the phylogenetic group D2O102-ST405 clone, was determined. pTN48 is, for the most part, a mosaic of virulence, antibiotic resistance, and addiction system modules found in various other plasmids. The presence of multiple addiction systems indicates that the plasmid should be stably maintained in theE. coliclone, favoring dissemination of the CTX-M-14 enzyme.


2017 ◽  
Vol 11 (01) ◽  
pp. 51-57 ◽  
Author(s):  
Yandag Munkhdelger ◽  
Nyamaa Gunregjav ◽  
Altantsetseg Dorjpurev ◽  
Nishi Juniichiro ◽  
Jav Sarantuya

Introduction: The severity of urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) is due to the expression of a wide spectrum of virulence genes. E. coli strains were divided into four phylogenetic groups (A, B1, B2 and D) based on their virulence genes. The present study aimed to assess the relationship between virulence genes, phylogenetic groups, and antibiotic resistance of UPEC. Methodology: A total of 148 E. coli were tested for antimicrobial resistance against 10 drugs using the disk diffusion method. The isolates were screened by polymerase chain reaction (PCR) for detection of virulence genes and categorized into the four major phylogenetic groups. Results: Phylogenetic group B2 was predominant (33.8%), followed by D (28.4%), A (19.6), and B1 (18.2%). A higher prevalence of fimH (89.9%), fyuA (70.3%), traT (66.2%), iutA (62.2%), kpsMTII (58.8%), and aer (56.1%) genes were found in UPEC, indicating a putative role of adhesins, iron acquisition systems, and protectins that are main cause of UTIs. The most common antibiotic resistance was to cephalotin (85.1%), ampicillin (78.4%) and the least to nitrofurantoin (5.4%) and imipenem (2%). In total, 93.9% of isolates were multidrug resistant (MDR). Conclusions: This study showed that group B2 and D were the predominant phylogenetic groups and virulence-associated genes were mostly distributed in these groups. The virulence genes encoding components of adhesins, iron acquisition systems, and protectins were highly prevalent among antibiotic-resistant UPEC. Although the majority of strains are MDR, nitrofurantoin is the drug of choice for treatment of UTI patients in Ulaanbaatar.


2013 ◽  
Vol 58 (2) ◽  
pp. 1146-1152 ◽  
Author(s):  
Jia Chang Cai ◽  
Rong Zhang ◽  
Yan Yan Hu ◽  
Hong Wei Zhou ◽  
Gong-Xiang Chen

ABSTRACTTwenty-two KPC-2-producingEscherichia coliisolates were obtained from three hospitals in Hangzhou, China, from 2007 to 2011. One isolate, with OmpC porin deficiency, exhibited high-level carbapenem resistance. Pulsed-field gel electrophoresis showed that few isolates were indistinguishable or closely related. Multilocus sequence typing indicated that sequence type 131 (ST131) was the predominant type (9 isolates, 40.9%), followed by ST648 (5 isolates), ST405 (2 isolates), ST38 (2 isolates), and 4 single STs, ST69, ST2003, ST2179, and ST744. Phylogenetic analysis indicated that 9 group B2 isolates belonged to ST131, and 5 of 11 group D isolates belonged to ST648. Only one group B1 isolate and one group A isolate were identified. A representative plasmid (pE1) was partially sequenced, and a 7,788-bp DNA fragment encoding Tn3transposase, Tn3resolvase, ISKpn8transposase, KPC-2, and ISKpn6-like transposase was obtained. TheblaKPC-2-surrounding sequence was amplified by a series of primers. The PCR results showed that 13 isolates were consistent with the genetic environment in pE1. It is the first report of rapid emergence of KPC-2-producingE. coliST131 in China. TheblaKPC-2gene of most isolates was located on a similar genetic structure.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Mostafa Boroumand Boroumand ◽  
Mohsen Naghmachi ◽  
Mohammad Amin Ghatee

Background: Many bacteria can cause urinary tract infections (UTIs), among which Escherichia coli is the most common causative agent. E. coli strains are divided into eight phylogenetic groups based on the new Quadroplex-PCR method, which are different in terms of patterns of resistance to antibiotics, virulence, and environmental characteristics. Objectives: This study aimed to determine the phylogenetic groups and the prevalence of drug resistance genes in E. coli strains causing UTIs. Methods: In this descriptive cross-sectional study, 129 E. coli isolates obtained from the culture of patients with UTIs were evaluated for phylogenetic groups using the new method of Clermont et al. The identification of phylogenetic groups and antibiotic resistance genes was performed using the multiplex polymerase chain reaction (PCR) method. Results: In this study, concerning the distribution of phylogenetic groups among E. coli isolates, the phylogenetic group B2 (36.4%) was the most common phylogenetic group, followed by phylogroups C (13.2%), clade I (10.1%), D (9.3%), and A (3.1%) while groups B1 and F were not observed in any of the isolates, and 20.2% had an unknown state. Also, out of 129 E. coli isolates, the total frequency of tetA, tetB, sul1, sul2, CITM, DfrA, and qnr resistance genes was 59.7%, 66.7, 69, 62, 30.2, 23.3, and 20.2%, respectively. In this study, there was a significant relationship between antibiotics (P = 0.026), cefotaxime (P = 0.003), and nalidixic acid (P = 0.044) and E. coli phylogenetic groups. No significant relationship was observed between E. coli phylogenetic groups and antibiotic resistance genes. Conclusions: The results of this study showed that strains belonging to group B2 had the highest prevalence among other phylogroups, and also, the frequency of antibiotic resistance genes and drug-resistant isolates had a higher prevalence in this phylogroup. These results show that phylogroup B2 has a more effective role in causing urinary tract infections compared to other phylogroups, and this phylogroup can be considered a genetic reservoir of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document