scholarly journals Effect of Annealing on Microstructure and Mechanical Properties of Magnetron Sputtered Cu Thin Films

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shiwen Du ◽  
Yongtang Li

Cu thin films were deposited on Si substrates using direct current (DC) magnetron sputtering. Microstructure evolution and mechanical properties of Cu thin films with different annealing temperatures were investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), and nanoindentation. The surface morphology, roughness, and grain size of the Cu films were characterized by AFM. The minimization of energy including surface energy, interface energy, and strain energy (elastic strain energy and plastic strain energy) controlled the microstructural evolution. A classical Hall-Petch relationship was exhibited between the yield stress and grain size. The residual stress depended on crystal orientation. The residual stress as-deposited was of tension and decreased with decreasing of (111) orientation. The ratio of texture coefficient of (111)/(220) can be used as a merit for the state of residual stress.

1999 ◽  
Vol 594 ◽  
Author(s):  
R. Spolenak ◽  
C. A. Volkert ◽  
K. Takahashi ◽  
S. Fiorillo ◽  
J. Miner ◽  
...  

AbstractIt is well known that the mechanical properties of thin films depend critically on film thickness However, the contributions from film thickness and grain size are difficult to separate, because they typically scale with each other. In one study by Venkatraman and Bravman, Al films, which were thinned using anodic oxidation to reduce film thickness without changing grain size, showed a clear increase in yield stress with decreasing film thickness.We have performed a similar study on both electroplated and sputtered Cu films by using chemical-mechanical polishing (CMP) to reduce the film thickness without changing the grain size. Stress-temperature curves were measured for both the electroplated and sputtered Cu films with thicknesses between 0.1 and 1.8 microns using a laser scanning wafer curvature technique. The yield stress at room temperature was found to increase with decreasing film thickness for both sets of samples. The sputtered films, however, showed higher yield stresses in comparison to the electroplated films. Most of these differences can be attributed to the different microstructures of the films, which were determined by focused ion beam (FIB) microscopy and x-ray diffraction.


2009 ◽  
Vol 24 (9) ◽  
pp. 2974-2985 ◽  
Author(s):  
Erik G. Herbert ◽  
Warren C. Oliver ◽  
Maarten P. de Boer ◽  
George M. Pharr

A new method is proposed to determine the elastic modulus and residual stress of freestanding thin films based on nanoindentation techniques. The experimentally measured stiffness-displacement response is applied to a simple membrane model that assumes the film deformation is dominated by stretching as opposed to bending. Dimensional analysis is used to identify appropriate limitations of the proposed model. Experimental verification of the method is demonstrated for Al/0.5 wt% Cu films nominally 22 µm wide, 0.55 µm thick, and 150, 300, and 500 µm long. The estimated modulus for the four freestanding films match the value measured by electrostatic techniques to within 2%, and the residual stress to within 19.1%. The difference in residual stress can be completely accounted for by thermal expansion and a modest change in temperature of 3 °C. Numerous experimental pitfalls are identified and discussed. Collectively, these data and the technique used to generate them should help future investigators make more accurate and precise measurements of the mechanical properties of freestanding thin films using nanoindentation.


2001 ◽  
Vol 673 ◽  
Author(s):  
Volker Weihnacht ◽  
Winfried Brückner

ABSTRACTFour-point bending experiments in combination with thermal cycling of thin films on substrates were performed in a dedicated apparatus. Strains up to ±0.8% could be imposed into Cu films of 0.2, 0.5, and 1.0 μm thickness on Si substrates by bending the substrates at various temperatures in high vacuum. After relief of the bending, the residual stress was measured by the wafer-curvature method. At temperatures below 250°C, the yield behavior is asymmetric in tension and compression. The amount of plastic strain introduced by external bending increases with film thickness, but the absolute values of the introduced plastic strains are very low throughout. At higher temperatures, there is no clear thickness dependence and no asymmetry in tension and compression. The results are discussed in connection with the formation of misfit dislocations during plastic deformation of thin films.


2014 ◽  
Vol 602-603 ◽  
pp. 1004-1008
Author(s):  
Yang Qiu ◽  
De Yi Meng ◽  
Yu Feng Chen ◽  
Chen Kui Zu

Tin doped indium oxide (ITO) thin films were prepared on IR glass substrates at different oxygen flow rate by ion-assisted electron beam evaporation method, high purity ITO particles (In2O3: SnO2 = 9:1 Wt%) were used as source material. Properties such as microstructure, morphology and mechanical properties were investigated by X-ray diffractometer, SEM and scratch tester, respectively. Meanwhile, lattice constant a, crystal grain size and residual stress situation of films as-deposited were calculated and discussed in detail. The results indicated that all of the films as-deposited were polycrystalline and represented [111] preferential orientation. With the increasing of the oxygen flow rate, grain size and surface roughness of films as-deposited decreased, and inner stress remained in film increased. There were two types of failure mode occurred in ITO films according to different stress situation. Relative high level of residual stress improved the mechanical properties of ITO films in a certain extent.


2009 ◽  
Vol 113 (2) ◽  
pp. 976-983 ◽  
Author(s):  
Wonbong Jang ◽  
Jongchul Seo ◽  
Choonkeun Lee ◽  
Sang-Hyon Paek ◽  
Haksoo Han

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


2018 ◽  
Vol 45 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Giuseppe Saccomandi

The mechanical properties of rubber-like materials have been offering an outstanding challenge to the solid mechanics community for a long time. The behaviour of such materials is quite difficult to predict because rubber self-organizes into mesoscopic physical structures that play a prominent role in determining their complex, history-dependent and strongly nonlinear response. In this framework one of the main problems is to find a functional form of the elastic strain-energy that best describes the experimental data in a mathematical feasible way. The aim of this paper is to give a survey of recent advances aimed at solving such a problem.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 188 ◽  
Author(s):  
Lu Feng ◽  
Yong-Yue Ren ◽  
Yan-heng Zhang ◽  
Shibin Wang ◽  
Linan Li

By using nc-Ni coatings as a model system, systematic experiments were designed to evaluate the interaction between the microstructural and mechanical properties tailored by electrodeposition conditions. A direct correlation between grain size and texture was established for the first time. The grain size of the (111) crystalline plane decreases with the texture coefficient (RTC) regardless of the process conditions, and that of the (220) plane has different trends. Then, a peculiar phenomenon is revealed that the dependence of hardness on grain size is accurately described by the Hall-Petch relationship when changing the temperature or pH, but with different slopes, while it deviates from such a relationship with changing current density, denoting more underlying mechanisms related to texture. Finally, a surprising degree of influence of texture on hardness and elastic modulus is also presented, with the overall trend of hardness increasing with texture; and when the RTC of (111) exceeds 40%, the elastic modulus increases with texture, implying a fundamental relationship between modulus and texture. Texture predominates over the other factors on the elastic modulus, revealing the importance of elastic anisotropy. Significantly, the present work suggests a useful tailoring routine to fabricate high quality nc-Ni coatings with the desired structure and mechanical properties.


1991 ◽  
Vol 13 (4) ◽  
pp. 243-260 ◽  
Author(s):  
P. Gangli ◽  
J. A. Szpunar ◽  
Sugondo

A series of experiments were made determining textural, microstructural, and mechanical properties in cold drawn, and spheroidization heat treated low-C steel wires (AISI-1018 and 1033 grades). It was found that texture exerted a significant influence on the mechanical properties, while microstructure had a comparable influence.Mechanical properties are represented by yield strength (YS), ultimate compressive strength (UCS) and by homogeneous strain energy (EHOM), defined by the integral of stress up to uniform elongation. Textural properties are represented by the Taylor-factor, M, the R-value, and by the maximum of the orientation distribution function (ODFMAX). Micro-structural properties are treated with the help of the aspect ratio parameter (1/√AR), where AR is the grain aspect ratio (length to ellipsoidal width), the grain size parameter (1/√D), and the mean free path between second phase spheroidized cementites √N.For cold drawn steel wires, homogeneous strain energy (EHOM) is well correlated to (1/√AR) and (ODFMAX). Yield strength, on the other hand, appears to be chiefly influenced by the aspect ratio parameter, thus here ODFMAX exerts less influence. The yield strength (YS) of annealed, spheroidization treated low-C wires are equally influenced by the grain size parameter (1/√D), the mean distance between spherulites (√N) and by ODFMAX.The textures of the cold drawn wires could be well described by the 〈110〉 fibre parallel to wire axis, and by the 〈111〉 fibre normal to wire axis. The annealed wires, while also featuring these two fibres, displayed a distinct {111}〈110〉single orientation.


Sign in / Sign up

Export Citation Format

Share Document