scholarly journals Analysis of the Seismic Performance of Site-Bolted Beam to Column Connections in Modularized Prefabricated Steel Structures

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Xuechun Liu ◽  
Xiaoxiong Cui ◽  
Zhiwei Yang ◽  
Xinxin Zhan

This paper proposes a site-bolted connection that is suitable for modularized prefabricated steel structures. Excellent ductility is achieved by various structural measures. Six connection specimens with different parameters were subjected to quasi-static loading tests and finite element analysis (FEA) to determine the seismic performance of the proposed connection (e.g., hysteretic behavior, skeleton curve, ductility, and failure mode). The results of the tests and FEA showed that the connection underwent sufficient plastic deformation under cyclic loading and that its ultimate rotation angle could reach 0.09 rad. A clear plastic hinge formed on the beam before the connection failed, which suggests a ductile failure mode. The connection exhibited a wide hysteresis loop, which indicated good seismic performance. The results also showed that the connection does not slip under small earthquakes and could dissipate energy through slippage in the connection region under a moderate earthquake and through slippage in the connection region as well as plastic deformation at the beam end under a severe earthquake. The number of bolts was the main parameter that affected the seismic performance of the connection. The test and FEA results demonstrated that all six specimens had excellent seismic and ductile performance and an exceptional plastic rotation capacity.

2018 ◽  
Vol 175 ◽  
pp. 02033
Author(s):  
Yuxiao Lang ◽  
Lianguang Jia

In order to study the seismic performance of wedge-shaped light steel castellated portal frame, the finite element analysis software Abaqus is used to simulate the seismic behavior of the portal frame with a single span hexagonal hole with a span of 24m. The influence of the opening ratio and the distance between the first hole of the near column and the end to the column edge on the hysteretic curve, skeleton curve, stiffness degeneration, ductility and energy dissipation capability are analyzed and the ultimate destructive form is also obtained. The results show that under the low cycle reciprocating load, the castellated light steel portal frame forms the plastic hinge on both sides of the structure near the first hole, and the structure loses its carrying capacity. The greater the opening ratio is, the lower the ultimate bearing capacity is, and the stiffness degeneration is more notable, ductility and energy dissipation are worse. The distance between the first hole of the near column and the end to the column edge has great influence on the ultimate bearing capacity, stiffness degradation and ductility. The greater the distance is, the better the ultimate bearing capacity and the ductility are.


2020 ◽  
pp. 136943322096527
Author(s):  
Longji Dang ◽  
Rui Pang ◽  
Rui Liu ◽  
Hongmei Ni ◽  
Shuting Liang

This paper aims to investigate the seismic performance of hollow floor interior slab-column connection (HFISC). In this new connection system, several tube fillers are placed in slab to form hollow concrete. Moreover, locally solid zone, shear components, and hidden beam around the connections are installed to improve the bearing capacity and ductility of specimens. Three slab-column connections with different shear components were tested under cyclic loading and every specimen was constructed with parallel tube fillers in the north direction and orthogonal tube fillers in the south direction. The seismic behavior of specimens was evaluated according to the hysteretic response, skeleton curve, ductility, stiffness degradation, and energy dissipation. A finite element model was then developed and validated by a comparison with the experimental results. Based on experimental results and finite element analysis results, the relative effects of the hollow ratio of slab, the ratio of longitudinal reinforcement, the shear area of bent-up steel bars, and the arm length of welding section steel cross bridging were elucidated through parametric studies. This new slab-column connection showed better plastic deformation capacity while the bearing capacity was kept. Specimens with parallel tube fillers showed better seismic behavior than those of specimens with orthogonal tube fillers.


2019 ◽  
Vol 9 (7) ◽  
pp. 1456 ◽  
Author(s):  
Wenwei Yang ◽  
Ruhao Yan ◽  
Yaqi Suo ◽  
Guoqing Zhang ◽  
Bo Huang

Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint. In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated by two forms, which included the circular chord and braces, the square chord and circular braces, and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the surface of the chord of the joints without filling concrete, while the failure mode of the joints filled with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the compressive braces had a certain buckling deformation; The strengthening measures of concrete filled with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord. The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints strengthened with fly ash concrete, which was better than that of the K-joints strengthened with ordinary concrete. The results of ANSYS (a large general finite element analysis software developed by ANSYS Company in the United States) analysis agreed well with the experimental results.


2012 ◽  
Vol 166-169 ◽  
pp. 1383-1386
Author(s):  
Hong Dong Ran ◽  
Wen Xv ◽  
Ming Zhou Su

According to the poorly seismic behaviors of composite staggered trusses system, an improved composite staggered trusses system was proposed. Based on the experimental study of a 1/3 scale improved composite staggered truss frame steel structure model under cyclic loading, the seismic behaviors and failure mechanism was studied, and the seismic behaviors was evaluated by the hysteretic behavior, ductility, energy dissipation and rigidity degeneration. The study showed that the improved composite staggered truss steel structures had the advantages in bearing capacity, ductility, deformability and energy dissipation, but the lateral rigidity was weak and non-uniform along its vertical layout. The stress measurement showed that the plastic hinge formed in the web members of the truss firstly, then, in the chord members of the truss, and finally the plastic hinges formed in the column, earthquake energy mostly dissipated by the truss members, the failure mechanism of the improved composite staggered truss steel structures was the beam hinges failure mechanism.


2008 ◽  
Vol 400-402 ◽  
pp. 707-711
Author(s):  
Hai Qing Liu ◽  
Jing Yuan ◽  
Shao Ying Hou ◽  
Yang Xue

Application of carbon fiber material to reinforced concrete structure is a systems engineering involving materials, design and application, which is also an applied science involving numerous subjects. Carbon cloth is used to reinforce structures in many projects, but the study on strengthening frame joints is still little. Especially the study on aseismatic performance of frame structure side joints is much less. In this paper, the author established constitutive relation of RC frame side joints strengthened with carbon cloth and made a numerical simulation analysis of four side joints of beam column plate under low-cycle repeated load with ANSYS, a software based on finite element analysis. The author analyzed the failure mode and the mechanism under stress, found out the characteristics of hysteretic curve of such kind of joints, acquired ductility coefficient and equivalent viscous damping ratio coefficient and studied the structure ductility and seismic-energy-dissipating capacity. It was shown that failure mode transited from shear brittle failure of core space to ductile failure of plastic hinge of beam end, joints’ seismic-energy-dissipating capacity and ductility were improved observably, joints’ displacement between layers was reduced, and rigidity and aseismatic capacity of component were improved after the joints’ being reinforced with carbon cloth. And aseismatic performance of structure was superior obviously.


2014 ◽  
Vol 578-579 ◽  
pp. 252-255
Author(s):  
Ya Feng Xu ◽  
Qian Chen ◽  
Pi Yuan Xu ◽  
Riyad S. Aboutaha

Composite concrete filled steel tubular (CFST) column is a new type of column having high ductility and high load-bearing capacity. In this paper, the finite element analysis software ABAQUS is used to study the seismic performance of 3D joint of composite CFST column and steel beam. The hysteretic curve and skeleton curve are obtained by changing the strength grade of the steel beam; calculate the energy dissipation ratio of the joint. The results show that the higher the beam’s steel strength the higher ultimate capacity of the joint in the constant axial load. But the full degree of hysteresis curve, energy dissipation and displacement ductility of the space joint decrease.


2013 ◽  
Vol 353-356 ◽  
pp. 2069-2072
Author(s):  
Hua Ma ◽  
Xue Wei Zhang ◽  
Zhen Bao Li ◽  
Wen Jing Wang ◽  
Fang Liang Zhang ◽  
...  

An experiment of three T-shape beam-column steel joints with intensive cover plate was conducted under low cyclic loading with different cycle numbers, to study seismic performance of the joints subjected to long-period ground motions. Effects of cycle number on mechanical performance and length of plastic hinge were analyzed. The results show that as the cycle number increases, capacity of the joint decreases, and plastic hinge of the joint develops longer which appears closer to the cover plate, and the platform of skeleton curve grows longer, and the stiffness attenuates slightly.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lai Wang ◽  
Wei Xuan ◽  
Ying Zhang ◽  
Shuping Cong ◽  
Feng Liu ◽  
...  

In order to assess the seismic performance of damaged reinforced concrete (RC) frame strengthened with carbon fiber reinforced polymers (CFRP) sheets, two experimental specimens with identical reinforcement ratio and geometric dimensions were designed following Chinese code for seismic design of buildings. Experimental specimens consist of a reference (undamaged) RC frame, namely, KJ-1, and an earthquake-damaged RC frame strengthened with CFRP sheets, namely, KJ-2. A pseudostatic test was conducted on the two specimens to simulate moderate earthquake damage. The strengthening effects of CFRP sheets on damaged RC frame were discussed in terms of hysteretic curve, skeleton curve, stiffness degradation, and ductility. In addition, numerical method based on fiber model method was utilized to analyze the seismic performance of KJ-1 and KJ-2 and it is compared with the experimental result. Both the results confirm that the method of exterior bonding CFRP sheets on the damaged RC frame has restored the seismic performance such as bearing capacity, stiffness, and ductility to its original undamaged level, and some of the seismic performance of the damaged RC frame strengthened with CFRP sheets is even better than the undamaged one, which proves that the method has significant effect in strengthening postearthquake-damaged RC frames.


2014 ◽  
Vol 670-671 ◽  
pp. 344-348 ◽  
Author(s):  
Wen Feng Chen ◽  
Xiao Hui Yuan ◽  
Bin Li

Three model specimens of alkali-activated slag concrete filled steel tube (AAS-CFST) with different axial compression ratio and steel ratio were designed and tested in the present study. The seismic performance of the structures were evaluated by testing them with combined lateral constant compression and vertical cyclic loads. The structural performance, such as the testing observations, hysteretic behavior, skeleton curve, stiffness degradation, energy dissipation capacity and ductility performance was discussed in detailed. The results show that all the specimens’ damage were bending deformation mode, and the hysteretic curves are relatively smooth. Test data indicated that increased the axial compression ratio improved the load bearing capacity, initial stiffness.


2013 ◽  
Vol 790 ◽  
pp. 247-251
Author(s):  
Li Ting Dong ◽  
Yan Wang

Based on node test and finite element analysis results of four different structural form enhanced nodes,failure modes,hysteretic behavior,bearing capacity,ductility and energy dissipation capacity of nodes are analyzed comprehensively and comparatively for more in-depth exploration about the seismic performance of symmetric enhanced nodes.The results showed that all the symmetric enhanced nodes have full hysteretic curve and energy dissipation capacity. On the whole,The flange-plate reinforced node exhibit better seismic performance.


Sign in / Sign up

Export Citation Format

Share Document