scholarly journals Recovery from Cogwheel Rigidity and Akinesia and Improvement in Vibration Sense and Olfactory Perception following Removal of an Epoxy-Oleic Acid DNA Adduct

2017 ◽  
Vol 2017 ◽  
pp. 1-3 ◽  
Author(s):  
Jean A. Monro ◽  
John McLaren-Howard ◽  
Mussadiq Shah ◽  
Peter O. O. Julu ◽  
Basant K. Puri

The epoxy fatty acidcis-12,13-epoxy-oleic acid, which acts as a DNA adduct, may be generated during long-term storage of many seed oils, including those used in cooking, with frying oils and fried foods being a major source in the modern human diet. Removal of this epoxy fatty acid from the locus of theN-formyl peptide receptors was associated with recovery from cogwheel rigidity and akinesia as well as with improvement in vibration sense and olfactory perception.

2016 ◽  
Vol 2 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J.M. Pino Moreno ◽  
A. Ganguly

In the present paper we have determined the fatty acid content of some edible insects of Mexico. A comparative analysis of the insect species studied in this research showed that caproic acid was present in a minimal proportion which ranged between 0.01 for Periplaneta americana (nymphs) and 0.06 (g/100 g, dry basis) for Euschistus strenuus. The highest proportion of caprilic acid (0.09) was found in Tenebrio molitor (adults). Atta sp. had the highest amount of capric acid (0.26). Polistes sp. was found to be rich in lauric acid (0.77) and for myristic acid it had the highest content (5.64). Dactylopius sp. and E. strenuus were rich in palmitic acid (14.89). Euschistus taxcoensis had the highest quantity of palmitoleic acid (12.06). Llaveia axin exhibited the highest quantity of stearic acid (22.75). Polistes sp. was found to be rich in oleic acid (38.28). The highest quantity of linoleic acid was observed in T. molitor (larvae) (10.89), and in L. axin the highest content of linolenic acid (7.82) was obtained. A comparison between the species under the present investigation revealed that, in general, the insects are poor in caproic, caprilic, capric, lauric, myristic, palmitoleic and linolenic acids, because the quantities were either minimal or could not be detected at all. They had moderate quantities of stearic, palmitic and linoleic acids and had high quantities of oleic acid. Finally it was concluded that although a particular insect species is unable to fulfil the total fatty acid need for a human, if consumed in combination they could definitely be able to supply a good amount of this highly valued nutrient.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1245
Author(s):  
Naoufal Lakhssassi ◽  
Valéria Stefania Lopes-Caitar ◽  
Dounya Knizia ◽  
Mallory A. Cullen ◽  
Oussama Badad ◽  
...  

Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.


2020 ◽  
Author(s):  
Jarrad R Prasifka ◽  
Beth Ferguson ◽  
James V Anderson

Abstract The red sunflower seed weevil, Smicronyx fulvus L., is a univoltine seed-feeding pest of cultivated sunflower, Helianthus annuus L. Artificial infestations of S. fulvus onto sunflowers with traditional (<25% oleic acid), mid-oleic (55–75%), or high oleic (>80%) fatty acid profiles were used to test if fatty acids could be used as natural markers to estimate the proportion of weevils developing on oilseed sunflowers rather than wild Helianthus spp. and confection (non-oil) types. Oleic acid (%) in S. fulvus confirmed the fatty acid compositions of mature larvae and weevil adults reflected their diets, making primary (oleic or linoleic) fatty acids feasible as natural markers for this crop-insect combination. Oleic acid in wild S. fulvus populations in North Dakota suggests at least 84 and 90% of adults originated from mid-oleic or high oleic sunflower hybrids in 2017 and 2018, respectively. Surveys in 2017 (n = 156 fields) and 2019 (n = 120 fields) extended information provided by S. fulvus fatty acid data; no significant spatial patterns of S. fulvus damage were detected in samples, damage to oilseed sunflowers was greater than confection (non-oil) types, and the majority of damage occurred in ≈10% of surveyed fields. Combined, data suggest a few unmanaged or mismanaged oilseed sunflower fields are responsible for producing most S. fulvus in an area. Improved management seems possible with a combination of grower education and expanded use of non-insecticidal tactics, including cultural practices and S. fulvus-resistant hybrids.


1965 ◽  
Vol 43 (2) ◽  
pp. 337-340 ◽  
Author(s):  
J. S. Barlow

When larvae of the parasitic fly Agria affinis (Fallén) were reared on fatty acid free diets, the characteristically high palmitoleic acid content of the body fats was much increased. Oleic acid in the diet was effective in reducing this, but not so effective as a mixture of fatty acids. The body fats still contained unusually high proportions of palmitic, palmitoleic, and oleic acids even when a mixture of fatty acids was fed. These observations are related to earlier observations on the nutritional adequacy of various fatty acids.


1936 ◽  
Vol 64 (3) ◽  
pp. 333-338 ◽  
Author(s):  
O. M. Helmer

The inhibiting action of pancreatic tissue was found to be associated with the unsaturated fatty acid fraction. As small an amount of fatty acid as 0.1 mg. inhibited the chicken sarcoma agent contained in 0.2 cc. of a 1:60 aqueous extract of Chicken Tumor I. The unsaturated fatty acid had an acid number and an iodine number similar to those for oleic acid. Commercial oleic acid also was found to inhibit the growth of the chicken sarcoma in comparable quantities.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Chunying Yang ◽  
Xueming Liu ◽  
Zhiyi Chen ◽  
Yaosheng Lin ◽  
Siyuan Wang

The oil contents and fatty acid (FA) compositions of ten new and one wildCamellia oleiferavarieties were investigated. Oil contents in camellia seeds from newC. oleiferavaried with cultivars from 41.92% to 53.30% and were affected by cultivation place. Average oil content (47.83%) of dry seeds from all ten new cultivars was almost the same as that of wild commonC. oleiferaseeds (47.06%). NewC. oleiferacultivars contained similar FA compositions which included palmitic acid (C16:0, PA), palmitoleic acid (C16:1), stearic acid (C18:0, SA), oleic acid (C18:1, OA), linoleic acid (C18:2, LA), linolenic acid (C18:3), eicosenoic acid (C20:1), and tetracosenoic acid (C24:1). Predominant FAs in mature seeds were OA (75.78%~81.39%), LA (4.85%~10.79%), PA (7.68%~10.01%), and SA (1.46%~2.97%) and OA had the least coefficient of variation among different new cultivars. Average ratio of single FA of ten artificialC. oleiferacultivars was consistent with that of wild commonC. oleifera. All cultivars contained the same ratios of saturated FA (SFA) and unsaturated FA (USFA). Oil contents and FA profiles of new cultivars were not significantly affected by breeding and selection.


1977 ◽  
Vol 37 (2) ◽  
pp. 167-186 ◽  
Author(s):  
J. D. Wood ◽  
N. G. Gregory ◽  
G. M. Hall ◽  
D. Lister

1. Two experiments were done with Pietrain and Large White pigs (about 50 kg body-weight) to determine whether fat mobilization is enhanced in the stress-sensitive Pietrains (which also produce pale, soft, exudative (PSE) meat).2. In Expt 1, plasma glucose and insulin concentrations and free fatty acid (FFA) concentrations and composition were measured in five Pietrains and five Large Whites after feeding, during an infusion of norepinephrine (2.5 μg/kg body-weight per min), 16 and 21 h after the withdrawal of food and following insulin administration (0.3 IU/kg body-weight). The entry rate of oleic acid was measured 4 h after feeding. Body composition and longissimus dorsi pH measurements were made on killing the pigs 4 d after the experiment.3. After feeding, the Pietrains tended to have lower concentrations of glucose and insulin in plasma compared with the Large Whites, and higher concentrations of FFA. The Pietrains also had a faster entry rate of oleic acid into body tissues. In fasting (16 h) these differences in hormone and metabolite concentrations were also present and relationships between them and body development could be detected. Pietrains had higher concentrations of FFA and lower concentrations of insulin than Large Whites at a particular stage of the development of fat and muscle (subcutaneous fat weight÷longissimus muscle weight).4. The fatty acid composition of FFA resembled that of the backfat triglycerides in fasting and during norepinephrine infusion but not in the fed state. In particular the proportion of fatty acid 18:1 was low in the fed pigs and that of 18:2 was high. The contrast in FFA composition between the fed and stimulated state was greater in the Large Whites.5. The Pietrains were less sensitive to the antilipolytic action of insulin. Glucose and FFA concentrations were similar in both breeds during the norepinephrine infusion although insulin concentrations were increased to a larger extent in the Large Whites at the termination of the infusion.6. In Expt 2, anaesthetized Pietrain and Large White pigs were given constant infusions of norepinephrine alone (2.5 μg/kg body-weight per min) and norepinephrine+propranolol (2 and 10 μg/kg body-weight per min) or phentolamine (2 and 10 μg/kg body-weight per min). The aim was to determine whether the breeds differed in their sensitivity to norepinephrine when conscious responses to the hormone were prevented.7. When norepinephrine alone was infused, fat mobilization was greater in the Pietrain pigs and glucose concentrations were greater in the Large Whites. Propranolol markedly reduced the lipolytic action of norepinephrine, particularly in the Pietrain pigs studied, and phentolamine reduced its glycogenolytic action, particularly in the Large White pig.8. It seems that the leanness of stress-sensitive, PSE-susceptible Pietrain pigs may be due to an enhanced fat mobilization under various conditions, associated with an impairment in insulin metabolism and a greater sensitivity to the β-adrenergic action of catecholamines on body fat stores.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Dionne ◽  
A J Watson ◽  
D H Betts ◽  
B A Rafea

Abstract Study question Our objective is determining whether supplementing embryo culture media with palmitic acid and/or oleic acid impacts Nrf2/Keap1 antioxidant response pathways during preimplantation mouse embryo development. Summary answer Supplementation of embryo culture media with palmitic acid increases cellular Nrf2 levels per embryo after 48-hour culture, while oleic acid reverses this effect. What is known already Obese women experience higher incidence of infertility than women with healthy BMIs. The obese reproductive tract environment supporting preimplantation embryo development is likely to include enhanced free fatty acid (FFA) levels and increased accumulation of reactive oxygen species. Exposure to palmitic acid (PA) in vitro significantly impairs mouse embryo development while increasing ER stress mRNAs. Oleic acid (OA) reverses these effects. To further define effects of FFA exposure, we are characterizing the influence of FFAs on the Nrf2–Keap1 pathway and its downstream antioxidant defense systems. We hypothesize that PA treatment induces Nrf2-Keap1 activity, while OA treatment alleviates pathway activity. Study design, size, duration Female CD–1 mice (4–6 weeks) were super-ovulated via intraperitoneal injections of PMSG, followed 48 hours later by hCG. Female mice were mated with male CD–1 mice (6–8 months) overnight. Females were euthanized using CO2 and two-cell embryos were collected by flushing oviducts. Two-cell embryos were placed into KSOMaa-based treatment groups: 1) BSA (control); 2) 100µM PA; 3) 100µM OA; 4) 100µM PA+OA, and cultured for 48 hours (37 °C; 5% O2, 5% CO2, 90% N2). Participants/materials, setting, methods After 48-hour embryo culture, developmental stages of all mouse embryos were recorded. Immunofluorescence analysis of Nrf2 and Keap1 localization was performed for embryo treatments (BSA, 100µM PA, 100µM OA & 100µM PA+OA) using rabbit polyclonal anti-Nrf2 antibody, with Rhodamine-Phalloidin and DAPI staining. Embryos were imaged using confocal microscopy and Nrf2-positive cells were counted using ImageJ. Nrf2 and Keap1 mRNA abundances were assessed after culture in each treatment condition using RT-qPCR and the delta-delta Ct method. Main results and the role of chance Inclusion of 100µM PA in embryo culture significantly decreased blastocyst development frequency from 70.06±16.38% in the BSA (control) group to 11.61±8.19% in the PA-treated group (p < 0.0001). Embryo culture with 100µM OA and 100µM PA+OA co-treatment did not significantly impair blastocyst development (OA: 61.59±8.07%, p = 0.4053; PA+OA: 63.53±7.63%, p = 0.6204). Embryo culture with PA treatment significantly increased the mean percentage of Nrf2-positive cells to 56.83±30.49% compared with 21.22±15.63% in the control group (p < 0.0001). Conversely, 100µM OA and 100µM PA+OA treatments did not significantly affect Nrf2-positive cell frequencies compared with the control group (OA: 33.28±21.83%, p = 0.1825; PA+OA: 34.84±12.66%, p = 0.0691). Immunofluorescence results show that treating embryos with 100µM PA for 48 hours results in increased levels of cellular Nrf2, while combining 100µM PA with 100µM OA reversed these effects. Preliminary qPCR analysis showed no significant differences in Nrf2 or Keap1 relative transcript abundance between any embryo treatment groups. Nrf2 and Keap1 mRNA levels were both higher after embryo culture with 100µM OA than all other culture groups (p = 0.6268; p = 0.3201). Notably, Keap1 relative transcript levels dropped to undetectable levels after culture with 100µM PA, which suggests an increase in Nrf2 activation.Limitations, reasons for caution: While immunofluorescence localization of Nrf2/Keap1 provides insight into how the proteins behave during preimplantation embryo development, confocal images cannot determine protein-protein interactions or activity levels. Similarly, transcript information from RT-qPCR analysis only provides information about Nrf2 and Keap1 at the transcript level. Nrf2 activity will be assessed via downstream targets. Wider implications of the findings: The Nrf2–Keap1 pathway coordinates numerous cellular defence mechanisms, and is implicated in various diseases, including cancer. Establishing an impact of free fatty acid exposure on Nrf2–Keap1 during preimplantation embryo development will provide valuable information regarding the effects of maternal obesity on outcomes for embryos produced from these patients. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document