scholarly journals The Role of Liquid Fuels Channel Configuration on the Combustion inside Cylindrical Mesoscale Combustor

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Achmad Fauzan Hery Soegiharto ◽  
I. N. G. Wardana ◽  
Lilis Yuliati ◽  
Mega Nursasongko

This research intended to investigate combustion of liquid fuel in 3.5 mm inner diameter quartz glass tube mesocombustor, based on liquid film evaporation by using heat recirculation. The mesocombustor has a copper section for heating and evaporating the liquid fuel. In mesocombustor type A, the fuel was glided through the narrow canal in the copper wall while the air was glided through the axial of combustor. The flame could only be successfully stabilized in high-ratio equivalent ranging from ɸ  =1.1 to ɸ=1.6, due to the gap without combustion reaction caused by high air-fuel mixture over the limits of flame stability. Mesocombustor type B, which has annulus-shaped canal, could shift the flame stability from ɸ  =0.8 to ɸ  =1.2; however, it also narrowed the limits of flame stability due to the wall cooling. In mesocombustor type C, both liquid fuel and air were glided through the annulus-shaped canal in the copper wall to fix the fuel evaporation and air mixture. The flame of type C was successfully stabilized, from ɸ  =0.73 to ɸ  =1.48 wider than types A and B. The flame of type C mesocombustor is circle-shaped and fitted to cross section of mesocombustor, but it still has thin gap without any flames due to thermal quenching by the wall.

Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Swapnil A. Dharaskar ◽  
Kailas L. Wasewar ◽  
Mahesh N. Varma ◽  
Diwakar Z. Shende

A new class of green solvents, known as ionic liquids (ILs), has recently been the subject of intensive research on the extractive desulfurization of liquid fuels because of the limitation of traditional hydrodesulfurization method. In present work, eleven Lewis acid ionic liquids were synthesized and employed as promising extractants for deep desulfurization of the liquid fuel containing dibenzothiophene (DBT) to test the desulfurization efficiency. [Bmim]Cl/FeCl3was the most promising ionic liquid and performed the best among studied ionic liquids under the same operating conditions. It can remove dibenzothiophene from the model liquid fuel in the single-stage extraction process with the maximum desulfurization efficiency of 75.6%. It was also found that [Bmim]Cl/FeCl3may be reused without regeneration with considerable extraction efficiency of 47.3%. Huge saving on energy can be achieved if we make use of this ionic liquids behavior in process design, instead of regenerating ionic liquids after every time of extraction.


ALCHEMY ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Hendro Juwono ◽  
Ardita Elliyanti ◽  
Firman Satria Pamungkas ◽  
Anas Assari ◽  
Ahmad Hawky Dermawan ◽  
...  

<p>Liquid fuel from polystyrene waste and waste cooking oil biodiesel was successfully obtained through catalytic cracking using Al-MCM-41/Ceramic. The structure, morphology, acidity, and porosity of the catalyst were studied by SEM-EDX, pyridine FTIR, and N<sub>2</sub> gas adsorption-desorption. The products of catalytic cracking were analyzed using gas chromatogram-mass spectroscopy (GC-MS). The highest yield was obtained at feedstock variations of 57% (P): 43% (M) with the number of hydrocarbon fractions (&lt; C<sub>7</sub>) is 0.48%, hydrocarbon fraction (C<sub>8 </sub>- C<sub>12</sub>) is 20.99%, and hydrocarbon fraction (&gt; C<sub>12</sub>) is 78.53% in the cracking time 1 hours. Physical characteristics were reported in the form of density, flash point, and caloric value respective. The performance of liquid fuels with commercial fuels, Premium (RON 88), and additives of methyl tertiary butyl ether (MTBE) comparisons of 225 (mL): 750 (mL): 18.25 (mL) respectively produce thermal efficiency on engine use gasoline generator sets was 28.22% at the load of 2118 Watts. Based on this research, all variations of feedstock produce liquid fuels that are in accordance with SNI 06-3506-1994 concerning the quality of gasoline fuel types.</p><p> </p>Keywords: Catalytic cracking, polystyrene waste, waste cooking oil, liquid fuel


Author(s):  
Zhi Huang ◽  
Weimin Kan ◽  
Yuxuan Lu ◽  
Ting Cheng ◽  
Liangying Yu ◽  
...  

Increased ignition probabilities of ethanol are found on a heated hot-plate with the introduction of Al2O3, Fe3O4, and carbon nanotube (CNT) nanoparticle suspensions. We show that the mechanism is probably due to liquid fuel boiling point elevation caused by nanoparticle accumulation at liquid–vapor interfaces. The magnitudes of this impact are related to the number and geometry of nanoparticles but independent from the nanoparticle chemical compositions. These findings may have important applications for developing future alternative liquid fuels with advanced combustion characteristics.


Author(s):  
Abhishek Dubey ◽  
Pooja Nema ◽  
Abhijit Kushari

Abstract This paper describes experimental investigation of a Reverse Flow Slinger (RFS) combustor that has been developed in order to attain high flame stability and low emissions in gas turbine engines. The combustor employs centrifugal fuel injection through a rotary atomizer and performs flame stabilization at the stagnation zone generated by reverse flow configuration. The design facilitates entrainment of hot product gases and internal preheating of the inlet air which enhances flame stability and permits stable lean operation for low NOx. Moreover, the use of rotary atomizer eliminates the need for high injection pressure resulting in a compact and lightweight design. Atmospheric pressure combustion was performed with liquid fuels, Jet A-1 and Methanol at ultra-lean fuel air ratios (FAR) with thermal intensity of 28 - 50 MW/m3atm. Combustor performance was evaluated by analyzing the lean blowout, emissions and combustion efficiency. Test results showed high flame stability of combustor and a very low lean blowout corresponding to global equivalence ratio of around 0.1 was obtained. Sustained and stable combustion at low heat release was attained and NOx emissions as low as of 0.4 g/Kg and 0.1 g/Kg were obtained with Jet A-1 and Methanol respectively. Combustion efficiency of 55% and 90% was obtained in operation with Jet A-1 and Methanol. Performance of the combustor was significantly better with Methanol in terms of emissions and efficiency.


2021 ◽  
Author(s):  
Youjie Sheng ◽  
Yang Li ◽  
Kui Wu

Abstract A series of experiments was performed to investigate the spreading behavior of firefighting foam solutions on liquid fuel surfaces. The spreading coefficients of six kinds of aqueous film-forming foam solutions and one fluorine-free foam solution on the surface of four liquid fuels, namely, cyclohexane, diesel, n-heptane, and ethanol, were calculated on the basis of surface and interfacial tension. Spreading behavior was studied systematically using a high-speed camera, and then the relationship between spreading behavior and spreading coefficient was analyzed. Furthermore, the spreading area and spreading rate of different foam solution droplets on liquid fuel surfaces were studied in depth. The spreading amount of the foam solution droplets on the liquid fuel surfaces was measured. Four typical spreading phenomena, namely, spreading, suspension, dissolution, and sinking, of AFFF solutions on liquid fuel surfaces were identified. Moreover, a positive spreading coefficient did not necessarily lead to the formation of an aqueous film. The spreading area, spreading rate, and spreading amount were not proportional to the spreading coefficient. During the evaluation of the spreading property of firefighting foam, the spreading coefficient, spreading rate, and spreading amount must be focused on instead of only the spreading coefficient.


Author(s):  
R. Paullinga Prakash ◽  
S. Palani ◽  
D. Vijaya Kumar ◽  
S. Arun Kumar ◽  
S. Shanmugan

Use of gaseous fuels for fuelling the engines reduces reactive hydrocarbons and do not pose the problem of vaporization as with the liquid fuels. One of the problems of gaseous mixers is the ability to prepare a homogeneous mixing of air and fuel at a specific air-fuel ratio prior to entering the engine resulting high exhaust emissions. The objective of this project is to carry out three dimensional CFD analysis of CNG injection mixer to understand the flow behaviour of air fuel mixture and to optimize the design of injection mixer. The analysis was carried out by varying the injection position and injection inclination. The results of the CFD simulation could be used to understand the effect of position of fuel tube, injection inclination in the mixing of air and fuel. Further the results of the study would also be considered for the design modification.


1979 ◽  
Vol 33 (2) ◽  
pp. 149-175 ◽  
Author(s):  
Davis B. Bobrow ◽  
Robert T. Kudrle

Continued dependence on expensive imported liquid fuels puts stress on the relations among and the domestic performance of the members of OECD. Coordinated energy R&D could in principle lessen those stresses and also benefit other liquid fuel consumers. A political economy approach can help explain the tepid pursuit of this possibility in two ways. First, it can clarify the reasons for the weak collective action energy R&D record of the members of the OECD both before and after the oil events of 1973. Second, it can demonstrate and identify the nature of the undersupply of the public good of energy knowledge. The history of this area illustrates several general obstacles to the provision of public goods in realistically complex political situations. These include the uncertain and distant nature of commitments to actually deliver collective goods in the absense of self-enforcing agreements, unwillingness to jeopardize possible future private advantages, and the tendencies to link provision of particular public goods to cooperation by other parties with the provider on a host of other matters. In effect, the attempts of particular statesmen to tie energy R&D cooperation to other issues reinforce tendencies to view the choices not as ones about the level of provision of public goods, but rather as ones about national shares of private goods—economic, military, and political.


Author(s):  
E. A. Tyurina ◽  
A. S. Mednikov ◽  
P. Yu. Elsukov

The high costs of qualified liquid fuels in remote areas of Siberia and the Far East, as well as significant stocks of wood biomass in these areas determine the relevance of the presented studies. The integrated processing of woody biomass into synthetic liquid fuel and electricity will increase the energy and economic efficiency of processing technological waste, as well as improve the environmental situation in these areas. The aim of the work is technical and economic optimization of parameters modular installations of the combined production of electricity and methanol from woody biomass. The article presents an analysis of previously performed work on the topic of research and, based on them, selected one of the most effective ways to process wood biomass - oxidative conversion of this raw material to produce gas enriched in hydrogen and carbon oxides, synthesis of qualified liquid fuels and generating electricity when burning purge gas synthesis process. The technological scheme of modular plants for combined biomass-based production of electricity and synthetic liquid fuel, its mathematical model of its elements and the scheme as a whole are given. On the basis of the selected methods, optimization studies of the operation of a modular energy technology installation were carried out. Analysis of the results showed that the combined production of electricity and methanol based on biomass increases the thermal efficiency of the process by 12% and reduces investment by 15-20% compared with separate production. With an internal rate of return of capital of 15%, the cost of methanol from biomass will be 275-317 dollars per ton. At such a cost, methanol can compete with both boiler-furnace and motor fuels in the eastern regions of Russia.


Author(s):  
Aristotelis Komodromos ◽  
George Moniatis ◽  
Frixos Kontopoulos ◽  
George Zaimis ◽  
Matthieu Vierling ◽  
...  

Whichever the type of combustion installation, liquid fuels burned in gas turbines tend to generate particulate matter (PM) emissions, which consist in soot only or in ash plus soot, according to their ash-free or ash-forming character. Standard diffusion flame combustion systems are known as “universal” combustors, capable to burn both ash-free (naphtha, light and heavy distillates) and ash-forming (crude and heavy) fuels. In contrast, DLN systems are designed to burn gaseous fuels and light distillates. PMs in the range of a few parts per million represent a solid micropollutant, the measurement and abatement of which creates specific technical challenges. In order to fully characterize soot emission and investigate their reduction, GE has undertaken a multi-year investigation program covering (i) an exploratory engineering study starting from the EN13284-1 standard and (ii) the testing of a number of inorganic oxidation catalysts used in the form of fuel additives (“soot inhibitors”). In this framework, a joint work involving GE and Electricity Authority of Cyprus has been conducted in the first half of 2017 and a full-scale test plan has been performed at the Vasilikos power plant in Cyprus, involving a Frame 6F.03 DLN2.6 that burns light distillate oil and is equipped with a DeNOx water injection system. Four types of soot inhibitor additives: cerium (IV) and (III), iron (III) and (II) were tested. This paper reviews the results of this field test and compares them with data previously acquired at other power plants featuring different liquid fuels and combustion systems. Its goal is to provide the gas turbine community with a better understanding of PM emissions and their abatement using various soot inhibitor candidates, in function of liquid fuel type and combustion system.


Sign in / Sign up

Export Citation Format

Share Document