scholarly journals Loss of Sigma-1 Receptor Chaperone Promotes Astrocytosis and Enhances the Nrf2 Antioxidant Defense

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Tzu-Yu Weng ◽  
Denise T. Hung ◽  
Tsung-Ping Su ◽  
Shang-Yi A. Tsai

Sigma-1 receptor (Sig-1R) functions as a chaperon that interacts with multiple proteins and lipids and is implicated in neurodegenerative and psychiatric diseases. Here, we used Sig-1R KO mice to examine brain expression profiles of astrocytes and ubiquitinated proteins, which are both hallmarks of central nervous system (CNS) pathologies. Our results showed that Sig-1R KO induces increased glial fibrillary acidic protein (GFAP) expression in primary neuron-glia cultures and in the whole brain of fetus mice with concomitantly increased accumulations of ubiquitinated proteins. Astrogliosis was also observed in the neuron-glia culture. Upon proteasome or autophagy inhibitor treatments, the pronounced ubiquitinated proteins were further increased in Sig-1R KO neurons, indicating that the Sig-1R regulates both protein degradation and quality control systems. We found that Nrf2 (nuclear factor erythroid 2-related factor 2), which functions to overcome the stress condition, was enhanced in the Sig-1R KO systems especially when cells were under stressful conditions. Mutation or deficiency of Sig-1Rs has been observed in neurodegenerative models. Our study identifies the critical roles of Sig-1R in CNS homeostasis and supports the idea that functional complementation pathways are triggered in the Sig-1R KO pathology.

2018 ◽  
Vol 314 (5) ◽  
pp. H928-H939 ◽  
Author(s):  
Changhai Tian ◽  
Lie Gao ◽  
Matthew C. Zimmerman ◽  
Irving H. Zucker

The imbalance between the synthesis of reactive oxygen species and their elimination by antioxidant defense systems results in macromolecular damage and disruption of cellular redox signaling, affecting cardiac structure and function, thus contributing to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure [chronic heart failure (CHF)]. The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is an important antioxidant defense mechanism and is closely associated with oxidative stress-mediated cardiac remodeling in CHF. In the present study, we investigated the regulation of myocardial Nrf2 in the postmyocardial infarction (post-MI) state. Six weeks post-MI, Nrf2 protein was downregulated in the heart, resulting in a decrease of Nrf2-targeted antioxidant enzymes, whereas paradoxically the transcription of Nrf2 was increased, suggesting that translational inhibition of Nrf2 may contribute to the dysregulation in CHF. We therefore hypothesized that microRNAs may be involved in the translational repression of Nrf2 mRNA in the setting of CHF. Using quantitative real-time PCR analysis, we found that three microRNAs, including microRNA-27a, microRNA-28-3p, and microRNA-34a, were highly expressed in the left ventricle of infarcted hearts compared with other organs. Furthermore, in vitro analysis revealed that cultured cardiac myocytes and fibroblasts expressed these three microRNAs in response to TNF-α stimulation. These microRNAs were preferentially incorporated into exosomes and secreted into the extracellular space in which microRNA-enriched exosomes mediated intercellular communication and Nrf2 dysregulation. Taken together, these results suggest that increased local microRNAs induced by MI may contribute to oxidative stress by the inhibition of Nrf2 translation in CHF. NEW & NOTEWORTHY The results of this work provide a novel mechanism mediated by microRNA-enriched exosomes, contributing to the nuclear factor erythroid 2-related factor 2 dysregulation and subsequent oxidative stress. Importantly, these new findings will provide a promising strategy to improve the therapeutic efficacy through targeting nuclear factor erythroid 2-related factor 2-related microRNAs in the chronic heart failure state, which show potentially clinical applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiafang Wu ◽  
Bei Yang ◽  
Yuxin Hu ◽  
Ru Sun ◽  
Huihui Wang ◽  
...  

Arsenic is a well-known human carcinogen. Stem cells are indicated to be involved in arsenic carcinogenesis and have a survival selection advantage during arsenic exposure with underlying mechanisms undefined. In the present study, we demonstrated that CD34high-enriched cells derived from HaCaT human keratinocytes showed stem-like phenotypes. These cells were more resistant to arsenic toxicity and had higher arsenic efflux ability than their mature compartments. The master transcription factor in antioxidant defense, nuclear factor erythroid 2-related factor 2 (NRF2) with its downstream genes, was highly expressed in CD34high-enriched cells. Stable knockdown ofNRF2abolished the hyperresistance to arsenic toxicity and holoclone-forming ability of CD34high-enriched cells. Our results suggest that skin epithelial stem/progenitor cells are more resistant to arsenic toxicity than mature cells, which is associated with the high innate expression ofNRF2in skin epithelial stem/progenitor cells.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 617 ◽  
Author(s):  
Tae-Cheon Kang

Mitochondria play an essential role in bioenergetics and respiratory functions for cell viability through numerous biochemical processes. To maintain mitochondria quality control and homeostasis, mitochondrial morphologies change rapidly in response to external insults and changes in metabolic status through fusion and fission (so called mitochondrial dynamics). Furthermore, damaged mitochondria are removed via a selective autophagosomal process, referred to as mitophagy. Although mitochondria are one of the sources of reactive oxygen species (ROS), they are themselves vulnerable to oxidative stress. Thus, endogenous antioxidant defense systems play an important role in cell survival under physiological and pathological conditions. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that maintains redox homeostasis by regulating antioxidant-response element (ARE)-dependent transcription and the expression of antioxidant defense enzymes. Although the Nrf2 system is positively associated with mitochondrial biogenesis and mitochondrial quality control, the relationship between Nrf2 signaling and mitochondrial dynamics/mitophagy has not been sufficiently addressed in the literature. This review article describes recent clinical and experimental observations on the relationship between Nrf2 and mitochondrial dynamics/mitophagy in various neurological diseases.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S655-S655
Author(s):  
James M Stone ◽  
Erik Arstad ◽  
Kjell Erlandsson ◽  
Rikki N Waterhouse ◽  
Peter J Ell ◽  
...  
Keyword(s):  

2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


2020 ◽  
Vol 18 (3) ◽  
pp. 260-265
Author(s):  
Xu Lin ◽  
Zheng Xiaojun ◽  
Lv Heng ◽  
Mo Yipeng ◽  
Tong Hong

The purpose of this study was to evaluate the protective effect of swertiamarin on heart failure. To this end, a rat model of heart failure was established via left coronary artery ligation. Infarct size of heart tissues was determined using triphenyl tetrazolium chloride staining. Echocardiography was performed to evaluate cardiac function by the determination of ejection fraction, left ventricular internal dimension in diastole and left ventricular internal dimension in systole. The effect of swertiamarin on oxidative stress was evaluated via enzyme-linked immunosorbent assay. The mechanism was evaluated using western blot. Administration of swertiamarin reduced the infarct size of heart tissues in rat models with heart failure. Moreover, swertiamarin treatment ameliorated the cardiac function, increased ejection fraction and fractional shortening, decreased left ventricular internal dimension in diastole and left ventricular internal dimension in systole. Swertiamarin improved oxidative stress with reduced malondialdehyde, while increased superoxide dismutase, glutathione, and GSH peroxidase. Furthermore, nuclear-factor erythroid 2-related factor 2, heme oxygenase and NAD(P)H dehydrogenase (quinone 1) were elevated by swertiamarin treatment in heart tissues of rat model with heart failure. Swertiamarin alleviated heart failure through suppression of oxidative stress response via nuclear-factor erythroid 2-related factor 2/heme oxygenase-1 pathway providing a novel therapeutic strategy for heart failure.


BIOPHYSICS ◽  
2020 ◽  
Vol 65 (5) ◽  
pp. 784-787
Author(s):  
A. V. Melnitskaya ◽  
Z. I. Krutetskaya ◽  
V. G. Antonov ◽  
N. I. Krutetskaya

Sign in / Sign up

Export Citation Format

Share Document