scholarly journals A Nanomechanical Investigation of Engineered Bone Tissue Comparing Elastoplastic and Viscoelastoplastic Modeling

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Marco Boi ◽  
Gregorio Marchiori ◽  
Maria Sartori ◽  
Francesca Salamanna ◽  
Gabriela Graziani ◽  
...  

It is common practice to implement the elastoplastic Oliver and Pharr (OP) model to investigate the spatial and temporal variations of mechanical properties of engineered bone. However, the viscoelastoplastic (VEP) model may be preferred being envisaged to provide additional insights into the regeneration process, as it allows evaluating also the viscous content of bone tissue. In this work, the elastic modulus (ER), contact hardness (HC), hardness (H), and viscosity index (ηQ) of newly formed bone tissue regenerated at 4 and 12 weeks from the implantation of a macroporous hydroxyapatite scaffold in a rabbit femoral critical-size model were addressed and compared to the mechanical properties of preexisting bone. Indentation curves were fitted with both the OP and VEP models. The VEP model outlined a wider gap between the mechanical properties of native and regenerated tissue when compared to the OP model. In addition, the VEP model indicated an increase of the viscosity index from 4 to 12 weeks, supporting the evidence of a still active regeneration process. The reported results confirmed the higher ability of VEP model compared to the more diffused OP model to provide important insights into bone mechanical properties, also during the bone regeneration process.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1992
Author(s):  
Marianne Koolen ◽  
Saber Amin Yavari ◽  
Karel Lietaert ◽  
Ruben Wauthle ◽  
Amir A. Zadpoor ◽  
...  

Additively manufactured (AM) porous metallic biomaterials, in general, and AM porous titanium, in particular, have recently emerged as promising candidates for bone substitution. The porous design of such materials allows for mimicking the elastic mechanical properties of native bone tissue and showed to be effective in improving bone regeneration. It is, however, not clear what role the other mechanical properties of the bulk material such as ductility play in the performance of such biomaterials. In this study, we compared the bone tissue regeneration performance of AM porous biomaterials made from the commonly used titanium alloy Ti6Al4V-ELI with that of commercially pure titanium (CP-Ti). CP-Ti was selected because of its high ductility as compared to Ti6Al4V-ELI. Critical-sized (6 mm diameter) femoral defects in rats were treated with implants made from both Ti6Al4V-ELI and CP-Ti. Bone regeneration was assessed up to 11 weeks using micro-CT scanning. The regenerated bone volume was assessed ex vivo followed by histology and biomechanical testing to assess osseointegration of the implants. The bony defects treated with AM CP-Ti implants generally showed higher volumes of regenerated bone as compared to those treated with AM Ti6Al4V-ELI. The torsional strength of the two titanium groups were similar however, and both considerably lower than those measured for intact bony tissue. These findings show the importance of material type and ductility of the bulk material in the ability for bone tissue regeneration of AM porous biomaterials.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Preethi Balasubramanian ◽  
Leonie A. Strobel ◽  
Ulrich Kneser ◽  
Aldo R. Boccaccini

AbstractZinc is a vital and beneficial trace element found in the human body. Though found in small proportions, zinc performs a variety of functions in relation to the immune system, cell division, fertility and the body growth and maintenance. In particular, zinc is proven to be a necessary element for the formation, mineralization, development and maintenance of healthy bones. Considering this attractive attributes of zinc, recent research has widely focused on using zinc along with silicate-based bioactive glasses for bone tissue engineering applications. This paper reviews relevant literature discussing the significance of zinc in the human body, along with its ability to enhance antibacterial effects, bioactivity and distinct physical, structural and mechanical properties of bioactive glasses. In this context, even if the present analysis is not meant to be exhaustive and only representative studies are discussed, literature results confirm that it is essential to understand the properties of zinc-containing bioactive glasses with respect to their in vitro biological behavior, possible cytotoxic effects and degradation characteristics to be able to effectively apply these glasses in bone regeneration strategies. Topics attracting increasing research efforts in this field are elaborated in detail in this review, including a summary of the structural, physical, biological and mechanical properties of zinc-containing bioactive glasses. This paper also presents an overview of the various applications in which zinc-containing bioactive glasses are considered for use as bone tissue scaffolds, bone filling granules, bioactive coatings and bone cements, and advances and remaining challenges are highlighted.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Changqi Luo ◽  
Junyi Liao ◽  
Zhenglin Zhu ◽  
Xiaoyu Wang ◽  
Xiao Lin ◽  
...  

The effect of age on mechanical behavior and microstructure anisotropy of bone is often ignored by researchers engaged in the study of biomechanics. The objective of our study was to determine the variations in mechanical properties of canine femoral cortical bone with age and the mechanical anisotropy between the longitudinal and transverse directions. Twelve beagles divided into three age groups (6, 12, and 36 months) were sacrificed and all femurs were extracted. The longitudinal and transverse samples of cortical bone were harvested from three regions of diaphysis (proximal, central, and distal). A nanoindentation technique was used for simultaneously measuring force and displacement of a diamond tip pressed 2000nm into the hydrated bone tissue. An elastic modulus was calculated from the unloading curve with an assumed Poisson ratio of 0.3, while hardness was defined as the maximal force divided by the corresponding contact area. The mechanical properties of cortical bone were determined from 852 indents on two orthogonal cross-sectional surfaces. Mean elastic modulus ranged from 7.56±0.32 GPa up to 21.56±2.35 GPa, while mean hardness ranged from 0.28±0.057 GPa up to 0.84±0.072 GPa. Mechanical properties of canine femoral cortical bone tended to increase with age, but the magnitudes of these increase for each region might be different. The longitudinal mechanical properties were significantly higher than that of transverse direction (P<0.01). A significant anisotropy was found in the mechanical properties while there was no significant correlation between the two orthogonal directions in each age group (r2<0.3). Beyond that, the longitudinal mechanical properties of the distal region in each age group were lower than the proximal and central regions. Hence, mechanical properties in nanostructure of bone tissue must differ mainly among age, sample direction, anatomical sites, and individuals. These results may help a number of researchers develop more accurate constitutive micromechanics models of bone tissue in future studies.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 847
Author(s):  
Bruna Botteon Della Coletta ◽  
Thiago Borges Jacob ◽  
Luana Aparecida de Carvalho Moreira ◽  
Karina Torres Pomini ◽  
Daniela Vieira Buchaim ◽  
...  

The aim is to evaluate the effects of photobiomodulation therapy (PBMT) on the guided bone regeneration process (GBR) in defects in the calvaria of rats filled with biphasic calcium phosphate associated with fibrin biopolymer. Thirty male Wistar rats were randomly separated: BMG (n = 10), defects filled with biomaterial and covered by membrane; BFMG (n = 10), biomaterial and fibrin biopolymer covered by membrane; and BFMLG (n = 10), biomaterial and fibrin biopolymer covered by membrane and biostimulated with PBMT. The animals were euthanized at 14 and 42 days postoperatively. Microtomographically, in 42 days, there was more evident bone growth in the BFMLG, limited to the margins of the defect with permanence of the particles. Histomorphologically, an inflammatory infiltrate was observed, which regressed with the formation of mineralized bone tissue. In the quantification of bone tissue, all groups had a progressive increase in new bone tissue with a significant difference in which the BFMLG showed greater bone formation in both periods (10.12 ± 0.67 and 13.85 ± 0.54), followed by BFMG (7.35 ± 0.66 and 9.41 ± 0.84) and BMG (4.51 ± 0.44 and 7.11 ± 0.44). Picrosirius-red staining showed greater birefringence of collagen fibers in yellow-green color in the BFMLG, showing more advanced bone maturation. PBMT showed positive effects capable of improving and accelerating the guided bone regeneration process when associated with biphasic calcium phosphate and fibrin biopolymer.


2020 ◽  
Vol 5 (1) ◽  
pp. 54
Author(s):  
Lia Anggresani ◽  
Rizka Afrina ◽  
Armini Hadriyati ◽  
Rahmadevi Rahmadevi ◽  
Mukhlis Sanuddin

<p><em>Tulang ikan tenggiri memiliki kandungan  kalsium dan fosfor. Sehingga tulang ikan dapat dibuat biomaterial hydroxyapatite berpori, Hydroxyapatite berpori  cocok untuk merekontruksi tulang.  pori yang terbentuk berfungsi sebagai media pembentukan jaringan sel tulang yang tumbuh untuk meningkatkan regenerasi tulang. Penelitian ini bertujuan melihat pengaruh variasi waktu tahan sintering dari hydroxyapatite berpori pada tulang ikan tenggiri. Bubuk CaO dibuat dari tulang ikan yang di rendam menggunakan NaOH dan aseton lalu difurnace 800°C. Bubuk CaO ditambahkan H</em><em><sub>3</sub>PO<sub>4.</sub> Atur pH hingga 10 dengan menambahkan NaOH lalu difurnace  900<sup>o</sup>C dengan lama pengendapan 12 dan 24 jam lalu dianalisa XRD. Hydroxyapatite yang didapatkan ditambahkan Polimer kitosan. selanjutnya dianalisa dengan SEM,PSA dan Hardness tester. Hasil Analisa XRF didapatkan CaO  50,814%. Hasil XRD pada pengendapan 12jam terbentuk senyawa hydroxyapatite dan trikalsium bis(phosphate(V)Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>), sedangkan pengendapan 24jam terbentuk senyawa hydroxyapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH) murni. Analisa SEM dilakukan pada variasi waktu sintering 4,5 dan 6 jam didapatkan morfologi yang tidak seragam. Hasil PSA pada waktu 4jam 0,873μm, 5jam 0,808μm dan 6jam 1,123μm. Uji Hardness Tester pada waktu 4jam 50 N, 5jam 54,1 N dan 6 jam 32,6 N. Dapat disimpulkan bahwa variasi waktu tahan sintering mempengaruhi sifat mekanik dan pada variasi lama pengendapan akan mempengaruhi pembentukan senyawa hydroksiapatite.</em></p><p><em><br /></em></p><p><em>Mackerel fish bones contain calcium and phosphorus. So that fish bones can be made porous hydroxyapatite biomaterial, porous Hydroxyapatite is suitable for bone reconstruction. The pore formed functions as a medium for the formation of bone tissue that grows to increase bone regeneration. This study aims to look at the effect of variations in the sintering resistant time of porous hydroxyapatite on mackerel fish bones. CaO powder is made from fish bones soaked using NaOH and acetone and then mixed with 800 ° C. CaO powder added H<sub>3</sub>PO<sub>4</sub>. Set the pH to 10 by adding NaOH then 900<sup>o</sup>C refined with a deposition time of 12 and 24 hours and then analyzed by XRD. Hydroxyapatite obtained was added with chitosan polymer. then analyzed with SEM, PSA and Hardness tester. XRF analysis results obtained CaO 50,814%. XRD results on 12 hours deposition of pure hydroxyapatite and tricalcium bis (phosphate (V)Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) compounds, while 24 hours deposition of pure hydroxyapatite (Ca<sub>5</sub>(PO4)<sub>3</sub>(OH) compounds were formed. and 6 hours obtained non-uniform morphology, PSA results at 4 hours 0.873μm, 5 hours 0.808μm and 6 hours 1.123μm Hardness Tester test at 4 hours 50 N, 5 hours 54.1 N and 6 hours 32.6 N. It can be concluded that variation of sintering holding time affects the mechanical properties and the variation of the depositional time will affect the formation of hydroxyapatite compounds.</em></p><p><em><br /></em></p>


2021 ◽  
Vol 16 (1) ◽  
pp. 36-47
Author(s):  
Tianxu Zhang ◽  
Yang Gao ◽  
Weitong Cui ◽  
Yanjing Li ◽  
Dexuan Xiao ◽  
...  

With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.


2004 ◽  
Vol 844 ◽  
Author(s):  
Devendra Verma ◽  
Kalpana S. Katti ◽  
Bedabibhas Mohanty

ABSTRACTA biomimetic process involving in situ mineralization of hydroxyapatite (HAP) is used to design new composite biomaterials for bone tissue engineering. Surface and bulk properties of HAP composites have been studied for hydroxyapatite mineralized in absence (ex situ) of polyacrylic acid (PAAc) and in presence (in situ) of PAAc. XRD studies show existence of structural disorder within in situ HAP. It has been observed that PAAc increases the rate of crystallization. FTIR studies indicate calcium deficiency in structure of both in situ and ex situ HAP. PAAc provides favorable sites for nucleation of HAP. During crystallization of HAP, PAAc dissociates to form carboxylate ion, which binds to HAP. Porous and solid composites of in situ and ex situ HAP with polycaprolactone (PCL) in 50:50 ratio have been made to evaluate their applicability as bone scaffold. Mechanical tests on solid samples indicate ex situ HAP/PCL composites have higher elastic modulus (1.16 GPa) than in situ HAP/PCL composites (0.82 GPa). However, in case of porous composites, in situ HAP/PCL composites are found to have higher elastic modulus (29.5 MPa) than ex situ HAP/PCL composites (10.4 MPa). Nanoindentation tests were also performed at different loads to evaluate mechanical properties of the composites. In situ HAP mineralized using non-degradable polymers has thus been shown to improve mechanical response in porous composites.


Author(s):  
O. V. Pogrebnoy ◽  
O. V. Pogrebnoy

An original method for studying the morphometric characteristics of spongy bone tissue was proposed. Using this method the distribution of the density of the spongy bone tissue of the distal metaepiphysis of the radius was studied. A decrease in the content of spongy bone tissue along the longitudinal axis of the bone has been experimentally proved. Modeling the mechanical properties of spongy bone tissue, according to the known versions of models for the elastic modulus of discontinuous media, makes it possible to calculate the behavior of bone tissue in conditions of various types of interaction. The comparison of the elastic moduli obtained according to our data with the results of other researchers has shown their comparability.


2020 ◽  
Vol 12 (534) ◽  
pp. eaay6853 ◽  
Author(s):  
Mohammad Mahdi Hasani-Sadrabadi ◽  
Patricia Sarrion ◽  
Sevda Pouraghaei ◽  
Yee Chau ◽  
Sahar Ansari ◽  
...  

Cell-laden hydrogels are widely used in tissue engineering and regenerative medicine. However, many of these hydrogels are not optimized for use in the oral environment, where they are exposed to blood and saliva. To address these challenges, we engineered an alginate-based adhesive, photocrosslinkable, and osteoconductive hydrogel biomaterial (AdhHG) with tunable mechanical properties. The engineered hydrogel was used as an injectable mesenchymal stem cell (MSC) delivery vehicle for craniofacial bone tissue engineering applications. Subcutaneous implantation in mice confirmed the biodegradability, biocompatibility, and osteoconductivity of the hydrogel. In a well-established rat peri-implantitis model, application of the adhesive hydrogel encapsulating gingival mesenchymal stem cells (GMSCs) resulted in complete bone regeneration around ailing dental implants with peri-implant bone loss. Together, we have developed a distinct bioinspired adhesive hydrogel with tunable mechanical properties and biodegradability that effectively delivers patient-derived dental-derived MSCs. The hydrogel is photocrosslinkable and, due to the presence of MSC aggregates and hydroxyapatite microparticles, promotes bone regeneration for craniofacial tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document