scholarly journals Ultrasonic Measurement of Dynamic Muscle Behavior for Poststroke Hemiparetic Gait

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Chen ◽  
Xudong Zhang ◽  
Wenxiu Shi ◽  
Jun Wang ◽  
Yun Xiang ◽  
...  

Quantitative evaluation of the hemiparesis status for a poststroke patient is still challenging. This study aims to measure and investigate the dynamic muscle behavior in poststroke hemiparetic gait using ultrasonography. Twelve hemiparetic patients walked on a treadmill, and EMG, joint angle, and ultrasonography were simultaneously recorded for the gastrocnemius medialis muscle. Pennation angle was automatically extracted from ultrasonography using a tracking algorithm reported previously. The characteristics of EMG, joint angle, and pennation angle in gait cycle were calculated for both (affected and unaffected) sides of lower limbs. The results suggest that pennation angle could work as an important morphological index to continuous muscle contraction. The change pattern of pennation angle between the affected and unaffected sides is different from that of EMG. These findings indicate that morphological parameter extracted from ultrasonography can provide different information from that provided by EMG for hemiparetic gait.

Author(s):  
Didia Carrillo-Hernández ◽  
Yered Uriel Terrones-Lara ◽  
Heraclio García-Cervantes ◽  
Alan David Blanco-Miranda

Currently in the country there are more than 27 thousand cases of annual amputations and more than 80% correspond to lower limbs, therefore, the demand for prosthetic equipment is greater than what the health sector institutions can provide. It should be noted that the equipment developed by these institutions is only passive equipment, so that only 10% of patients who receive a prosthetic equipment successfully complete their rehabilitation. The main problems that the patient faces when adapting to their prosthetic equipment is the response time and alignment vs the healthy limb, since it does not have an intelligent control system that allows them to respond in real time as the losted limb did. This causes gaps when performing your gait cycle, this over time can bring about abnormalities in your posture affecting the alignment of your motor system. This work allows us to analyze the range of motion of the ankles and knees, in addition to determining the angular velocity of both, it is essential information for the development of control systems necessary for active prosthetic equipment. The programming language where it was developed is the Python 3.7 software and additionally reproduce the simulation of the gait cycle.


2020 ◽  
Vol 15 (3) ◽  
pp. 3-14
Author(s):  
Péter Müller ◽  
Ádám Schiffer

Examining a human movement can provide a wealth of information about a patient’s medical condition. The examination process can be used to diagnose abnormal changes (lesions), ability development and monitor the rehabilitation process of people with reduced mobility. There are several approaches to monitor people, among other things with sensors and various imaging and processing devices. In this case a Kinect V2 sensor and a self-developed LabView based application was used, to examine the movement of the lower limbs. The ideal gait pattern was recorded in the RoboGait training machine and the measured data was used to identify the phases of the human gait. During the evaluation, the position of the skeleton model, the associated body joints and angles can be calculated. The pre-recorded ideal and natural gait cycle can be compared.With the self-developed method the pre-recorded ideal and natural gait cycle can be compared and processed for further evaluation. The evaluated measurement data confirm that a reliable and mobile solution for gait analysis has been created.


2014 ◽  
Vol 21 (1) ◽  
pp. 87-93
Author(s):  
Rouse Barbosa Pereira ◽  
Lílian Ramiro Felício ◽  
Arthur de Sá Ferreira ◽  
Sara Lúcia de Menezes ◽  
Marcos Raimundo Gomes de Freitas ◽  
...  

The Charcot-Marie-Tooth (CMT) disease is a peripheral hereditary neuropathy with progressive distal muscle atrophy and weakness, mainly in lower limbs, that evolves limiting the gait and balance. The objective of the study was to analyse the immediate effects of using Ankle-Foot Orthosis (AFO) in the gait's kinematics and balance in patients with CMT. Nine individuals were evaluated by Tinetti scales and Dynamic Gait Index (DGI) and gait's kinematics parameters through the motion capturing system. These evaluations were done before and during the use of AFO. Two-Way repeated analysis of variance was done to try the main or interaction effects related to "orthoses" and "repetition". A significant interaction effect was observed between the gait cycle and use the AFO to the average velocity (Wilks' Lambda=0.156, p=0.030, η2=0.844) like significant main effects in the ankle joint to the gait cycle (Wilks' Lambda=0.091, p=0.008, η2=0.909) and the use of AFO (Wilks' Lambda=0.444, p=0.013, η2=0.556). It was observed a significant change in the DGI scale during the use of AFO (p<0.05). The use of AFO promoted immediate effects on gait kinematics and in balance reactions. The results suggest that the use of AFO is an efficient strategy to stabilize the ankle joint, besides avoiding foot drop in patients with CMT.


1998 ◽  
Vol 85 (4) ◽  
pp. 1230-1235 ◽  
Author(s):  
Masamitsu Ito ◽  
Yasuo Kawakami ◽  
Yoshiho Ichinose ◽  
Senshi Fukashiro ◽  
Tetsuo Fukunaga

Fascicle length, pennation angle, and tendon elongation of the human tibialis anterior were measured in vivo by ultrasonography. Subjects ( n = 9) were requested to develop isometric dorsiflexion torque gradually up to maximal at the ankle joint angle of 20° plantarflexion from the anatomic position. Fascicle length shortened from 90 ± 7 to 76 ± 7 (SE) mm, pennation angle increased from 10 ± 1 to 12 ± 1°, and tendon elongation increased up to 15 ± 2 mm with graded force development up to maximum. The tendon stiffness increased with increasing tendon force from 10 N/mm at 0–20 N to 32 N/mm at 240–260 N. Young’s modulus increased from 157 MPa at 0–20 N to 530 MPa at 240–260 N. It can be concluded that, in isometric contractions of a human muscle, mechanical work, some of which is absorbed by the tendinous tissue, is generated by the shortening of muscle fibers and that ultrasonography can be used to determine the stiffness and Young’s modulus for human tendons.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Wang ◽  
Hui Wei ◽  
Runxiu Shi ◽  
Leitong Lin ◽  
Lechi Zhang ◽  
...  

AbstractThis study aimed to investigate lower-limb muscle activities in gait phases and co-contraction of one gait cycle in patients with lumbar disc herniation (LDH). This study enrolled 17 LDH patients and 17 sex- and age-matched healthy individuals. Bilateral muscle activities of the rectus femoris (RF), biceps femoris long head (BL), tibialis anterior (TA), and lateral gastrocnemius (LG) during walking were recorded. The gait cycle was divided into four phases by the heel strike and top off according to the kinematics tracks. Root mean square (RMS), mean frequency (MF), and co-contraction of surface electromyography signals were calculated. The LDH patients showed enhanced BL RMS during the single support phase (SS), second double support phase, and swing phase (SW) as well as decreased MF of RF during SS and of TA and LG during SW (p < 0.05). The co-contraction of the TA-LG was increased in LDH patients than in the control group (p < 0.05). Positive correlations were observed between TA-LG co-contraction (affected side, r = 0.557, p = 0.020; contralateral side, r = 0.627, p = 0.007) and the Oswestry disability index scores in LDH patients. LDH patients have increased BL firing rate and insufficient motor unit recruitment in specific phases in the lower limbs during walking. Dysfunction in LDH patients was associated with immoderate intermuscular co-contraction of the TA-LG during walking.


Sports ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 29 ◽  
Author(s):  
Ioli Panidi ◽  
Gregory C. Bogdanis ◽  
Vasiliki Gaspari ◽  
Polyxeni Spiliopoulou ◽  
Anastasia Donti ◽  
...  

Gastrocnemius medialis (GM) architecture and ankle angle were compared between flexibility trained (n = 10) and not trained (n = 6) female athletes, aged 8–10 years. Ankle angle, fascicle length, pennation angle and muscle thickness were measured at the mid-belly and the distal part of GM, at rest and at the end of one min of static stretching. Flexibility trained (FT) and not trained athletes (FNT) had similar fascicle length at the medial (4.19 ± 0.37 vs. 4.24 ± 0.54 cm, respectively, p = 0.841) and the distal part of GM (4.25 ± 0.35 vs. 4.18 ± 0.65 cm, respectively, p = 0.780), similar pennation angles, and muscle thickness (p > 0.216), and larger ankle angle at rest (120.9 ± 4.2 vs. 110.9 ± 5.8°, respectively, p = 0.001). During stretching, FT displayed greater fascicle elongation compared to FNT at the medial (+1.67 ± 0.37 vs. +1.28 ± 0.22 cm, respectively, p = 0.048) and the distal part (+1.84 ± 0.67 vs. +0.97 ± 0.97 cm, respectively, p = 0.013), larger change in joint angle and muscle tendon junction displacement (MTJ) (p < 0.001). Muscle thickness was similar in both groups (p > 0.053). Ankle dorsiflexion angle significantly correlated with fascicle elongation at the distal part of GM (r = −0.638, p < 0.01) and MTJ displacement (r = −0.610, p < 0.05). Collectively, FT had greater fascicle elongation at the medial and distal part of GM and greater MTJ displacement during stretching than FNT of similar age.


2013 ◽  
Vol 10 (2-3) ◽  
pp. 97-111
Author(s):  
M. Saiful Huq ◽  
M. O. Tokhi

A simulation based study of a completely new form of body-weight supported treadmill training (BWSTT) technique which is fully passive in nature is presented in this paper. The approach does not require any powered means at the lower limbs and is implemented using a combination of coordinated joint locking/unlocking and flexible torque transfer mechanisms. The hip extension pertaining to the stance phase of the gait cycle is achieved through the stance foot being literally dragged by the treadmill belt while the required manoeuvring of the trunk is expected to be accomplished by the voluntary arm-support from the subject. The swing phase, on the other hand, is initiated through appropriately coupling the swing knee with the contralateral extending hip and eventually achieve full knee extension through switching the treadmill speed to a lower value. Considering adequate support from the able arms, the process effectively turns the frictional force at the foot-treadmill belt interface into an agent causing the required whole body mechanical energy fluctuation during the gait cycle.The simulation platform consists of a dynamic planer (sagittal) full body humanoid model along with the treadmill model developed within a CAD based software environment interfaced with passive viscoelastic joint properties implemented in Simulink. The voluntary upper body effort as well as control of the gait cycle are also developed within MATLAB/Simulink environment. The gait cycle generated using the new concept is thoroughly investigated through this simulation study.


Paleobiology ◽  
2006 ◽  
Vol 32 (4) ◽  
pp. 652-665 ◽  
Author(s):  
Chris L. Organ

Spinal ossified tendons are a defining character for Ornithischia, one of the two major clades of dinosaurs. The function of these bony rods has remained a mystery since their first detailed description in 1886. Qualitative approaches to understand ossified tendon function have resulted in different ecological and behavioral interpretations for ornithopod dinosaurs. To evaluate ossified tendon function, this study constructed finite element models of the vertebral column for two ornithopod taxa: Tenontosaurus, which shows the plesiomorphic condition of longitudinally arrayed tendons along the spinous processes, and Brachylophosaurus, which exhibits a lattice of tendons along the spinous processes. Both models predict that ossified tendons stiffened the vertebral column, especially the tail, but the derived lattice of ossified tendons in iguanodontoidean dinosaurs, like Brachylophosaurus, increased spinal stiffness more than the plesiomorphic condition. Caudofemoral muscles that retracted the hindlimb during locomotion attached the femur to the tail in ornithopods. Increased tail stiffness caused by intratendinous ossification may have influenced locomotion by rigidly anchoring M. caudofemoralis longus to the tail, thereby allowing a more forceful retraction of the hindlimb by reducing ventral flexion of the tail during muscle contraction. Ossified tendons may also have been important for storing elastic energy throughout the gait cycle. Moreover, the lattice of ossified tendons stiffened the trunk and tail nearly equally in Brachylophosaurus, indicating the evolution of a postural function by passively supporting the epaxial musculature in maintaining a horizontal vertebral column.


2013 ◽  
Vol 312 ◽  
pp. 210-214
Author(s):  
Ji He Zhou

The aim of this study was to revealed the top-notch gymnast Kai Zous dismount of double salto backwards stretched with 2/1 twist. The findings showed that (1) at flight phase, (a) kinematics parameters had slightly different at off-bar moment in 2011 and 2012, (b) flight posture fitted with gymnastic rules, (2) at landing phase, (a) the lower limbs of Kai Zou didnt stretch, it was unfavorable for the following buffering, (b) his hip joint angle was smaller and knee joint angle was larger after landing in 2012, and these were favorable for the finish of buffering element, it will increase the horizontal distance of C.G. and improve stability of landing, (c) mean hip joint angle was 117.9o at landing, the buffering time was 0.215s.


Author(s):  
Qingchuan Ma ◽  
Linhong Ji ◽  
Rencheng Wang ◽  
Lap-Nam Wong

Paraplegic patients need assistant devices to manage daily lives due to moving disability of lower limbs, standing and moving always being their most pressing needs. A foot-wheel driving exoskeleton for moving assistance in a standing posture is introduced in this study, which uses a motor-belt-wheel driving mechanism at each foot to propel the whole system and a wireless handle to control the moving status. The overall design concept and detailed specifications of each module are presented in this paper. This study has completed the using experiments on two healthy subjects and a T10 paraplegic patient. The motion analysis was performed in a 3D gait analysis system to evaluate the fluctuation of the joint angle and corresponding response of major muscles in a process from start to a 4-s operation. The kinematics and EMG results showed that this exoskeleton could assist the upper body-abled user to complete the upright move without the help from others and the musculus triceps brachii and brachioradialis play an important role in maintaining the balance and counteract the motion fluctuation.


Sign in / Sign up

Export Citation Format

Share Document