scholarly journals Aberrant Expression of miR-362 Promotes Lung Cancer Metastasis through Downregulation of Sema3A

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dan Luo ◽  
Zheng Zhang ◽  
Zhao Zhang ◽  
Jia-Yue Li ◽  
Jian Cui ◽  
...  

miR-362 is a recently discovered member of the microRNA family, and it modulates a variety of physical activities and plays an important role in the occurrence and development of many tumors. However, the biological functions of hsa-miR-362-5p in non-small-cell lung carcinoma (NSCLC) are unknown. Transwell assay and colony formation were used to determine the migration, invasion, and proliferation of NSCLC cells in vitro. A subcutaneous tumor model in nude mice was established to detect NSCLC tumor growth in vivo. The direct binding of miR-362 to the 3′UTR of Semaphorin 3A (Sema3A) was confirmed by luciferase reporter assay. In this study, we found that the level of miR-362 was higher in NSCLC tissues than in adjacent normal tissues and that the level of miR-362 expression was also elevated in five NSCLC cell lines (A549, 95-D, H1299, H292, and H460) relative to a human normal lung epithelial cell line (BEAS2B). Furthermore, miR-362 promoted NSCLC cell invasion, migration, and colony formation in vitro and tumor formation in vivo. Next, we identified the miR-362 target gene Sema3A, which is significantly correlated with metastasis. Sema3A expression was increased in normal tissues relative to NSCLC tissues. This result is consistent with the fact that miR-362 expression is negatively correlated with Sema3A expression in clinical tissue samples and indicated that miR-362 can regulate Sema3A expression in NSCLC cells and consequently affect NSCLC invasion, migration, and colony formation. Taken together, these findings on the newly identified miR-362/Sema3A axis elucidate the molecular mechanism of NSCLC invasion and migration and could lead to a potential therapeutic target in NSCLC treatment.

2021 ◽  
Author(s):  
Qu Deng ◽  
Ramakrishnan Natesan ◽  
Florencia Cidre-Aranaz ◽  
Shehbeel Arif ◽  
Ying Liu ◽  
...  

AbstractEwing Sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1-ETS (EWSR1-FLI1/EWSR1-ERG) transcription factors drive EwS by orchestrating an oncogenic transcription program through de novo enhancers. Pharmacological targeting of these oncofusions has been challenged by unstructured prion-like domains and common DNA binding domains in the EWSR1 and ETS protein, respectively. Alternatively, identification and characterization of mediators and downstream targets of EWSR1-FLI1 dependent or independent function could offer novel therapeutic options. By integrative analysis of thousands of transcriptome datasets representing pan-cancer cell lines, primary cancer, metastasis, and normal tissues, we have identified a 32 gene signature (ESS32 - Ewing Sarcoma Specific 32) that could stratify EwS from pan-cancer. Of the ESS32, LOXHD1 – that encodes a stereociliary protein, was the most exquisitely expressed gene in EwS. CRISPR-Cas9 mediated deletion or silencing of EWSR1-FLI1 bound upstream de novo enhancer elements in EwS cells led to the loss of LOXHD1 expression and altered the EWSR1-FLI1, MYC, and HIF1α pathway genes, resulting in decreased proliferation and invasion in vitro and in vivo. These observations implicate LOXHD1 as a novel biomarker and a major determinant of EwS metastasis and open up new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Jia ◽  
Junfeng Dao ◽  
Jiusong Han ◽  
Zhijie Huang ◽  
Xiang Sun ◽  
...  

Abstract Background Tongue squamous cell carcinoma (TSCC) is one of the most common oral tumors. Recently, long intergenic noncoding RNA 00958 (LINC00958) has been identified as an oncogene in human cancers. Nevertheless, the role of LINC00958 and its downstream mechanisms in TSCC is still unknown. Methods The effect of LINC00958 on TSCC cells proliferation and growth were assessed by CCK-8, colony formation, 5-Ethynyl-2′-deoxyuridline (EdU) assay and flow cytometry assays in vitro and tumor xenograft model in vivo. Bioinformatics analysis was used to predict the target of LINC00958 in TSCC, which was verified by RNA immunoprecipitation and luciferase reporter assays. Results LINC00958 was increased in TSCC tissues, and patients with high LINC00958 expression had a shorter overall survival. LINC00958 knockdown significantly decreased the growth rate of TSCC cells both in vitro and in vivo. In mechanism, LINC00958 acted as a ceRNA by competitively sponging miR-211-5p. In addition, we identified CENPK as a direct target gene of miR-211-5p, which was higher in TSCC tissues than that in adjacent normal tissues. Up-regulated miR-211-5p or down-regulated CENPK could abolish LINC00958-induced proliferation promotion in TSCC cells. Furthermore, The overexpression of CENPK promoted the expression of oncogenic cell cycle regulators and activated the JAK/STAT3 signaling. Conclusions Our findings suggested that LINC00958 is a potential prognostic biomarker in TSCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Author(s):  
Kebin Zheng ◽  
Haipeng Xie ◽  
Xiaosong Wu ◽  
Xichao Wen ◽  
Zhaomu Zeng ◽  
...  

Abstract BackgroundIncreasing studies have revealed that circular RNAs (CircRNAs) make great contribution to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A in glioma. MethodsFirstly, RT-PCR was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and a cell model of CircPIP5K1A overexpression and knockdown was constructed. Subsequently, cell proliferation and viability were detected by CCK8 method and BrdU staining, apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (including Caspase3, Bax and Bcl2) and epithelial-mesenchymal transition (EMT) markers (including E-cadherin, Vimentin and N-cadherin) by western blot or RT-PCR. ResultsThe results manifested that CircPIP5K1A was obviously upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was distinctly related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated the proliferation, invasion, EMT of glioma cells, and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A also upregulated TCF12 and PI3K/AKT pathway activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while dual luciferase reporter assay and RNA immunocoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. ConclusionsAltogether, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates the development of glioma through the modulating miR-515-5p mediated TCF12/PI3K/AKT axis.


2021 ◽  
Author(s):  
Bo Jia ◽  
Junfeng Dao ◽  
Jiusong Han ◽  
Zhijie Huang ◽  
Xiang Sun ◽  
...  

Abstract ​ Background: Tongue squamous cell carcinoma (TSCC) is one of the most common oral tumors. Recently, long intergenic noncoding RNA 00958 (LINC00958) has been identified as an oncogene in human cancers. Nevertheless, the role of LINC00958 and its downstream mechanisms in TSCC is still unknown. Methods: The expression levels of LINC00958 in human TSCC tissues and adjacent normal tissues were detected. The effect of LINC00958 on TSCC cells proliferation and growth were assessed by CCK-8, colony formation, 5-Ethynyl-2’-deoxyuridline (EdU) assay, and flow cytometry assays in vitro and tumor xenograft model in vivo. Bioinformatics analysis was used to predict the target of LINC00958 in TSCC, which was verified by RNA immunoprecipitation and luciferase reporter assays. Results: We found LINC00958 was increased in TSCC tissues, and patients with high LINC00958 expression had a shorter overall survival. LINC00958 knockdown significantly decreased the growth rate of TSCC cells both in vitro and in vivo . In mechanism, LINC00958 acted as a competing endogenous RNA (ceRNA) by competitively sponging miR-211-5p. In addition, we identified centromere protein K (CENPK) as a direct target gene of miR-211-5p, which was higher in TSCC tissues than that in adjacent normal tissues. Up-regulated miR-211-5p or down-regulated CENPK could abolish LINC00958-induced proliferation promotion in TSCC cells. Conclusion: Furthermore, CENPK promoted the expression of oncogenic cell cycle regulators and activated the JAK/STAT3 signaling. Our findings suggest that LINC00958 is a potential prognostic biomarker in TSCC.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13086-13086
Author(s):  
S. Ohtani ◽  
K. Ueda ◽  
G. Jayanchandran ◽  
K. Xu ◽  
J. D. Minna ◽  
...  

13086 Background: 101F6 is a candidate tumor suppressor gene on chromosome 3p21.3, a site of allele loss and genomic alterations were frequently found in many human cancers. We previously showed that enforced expression of wt-101F6 by adenoviral virus significantly inhibited tumor cell growth in 3p21.3-deficient NSCLC cells in vitro and in vivo. How 101F6 exerts this effect is largely unknown. Using a computer-aided structural and functional modeling, we recently identified 101F6 as a member of cytochrome b-561 protein family, which is involved in the regeneration of vitamin C. We hypothesized that under normal physiologic conditions, 101F6 protects cells from oxidative damage by regenerating antioxidant vitamin C and that in 101F6-deficient tumor cells, exogenous 101F6 facilitates vitamin C-mediated cytotoxic H2O2 formation. Methods and Results: We examined endogenous 101F6 expression in human NSCLC cell lines and tissue samples. All normal lung bronchial epithelial cells and fibroblasts but few lung cancers expressed 101F6. We investigated the combined effect of 101F6 and vitamin C on the cell growth: a nanoparticle-mediated wt-101F6 gene transfer plus a sub-pharmacologic concentration of vitamin C synergistically inhibited 3p21.3-deficient NSCLC cell growth but did not affect normal cell growth. We also used a human NSCLC H322 orthotopic lung tumor xenograft mouse model to evaluate the therapeutic efficacy of systemic injection of 101F6 nanoparticles and intraperitoneal injection of vitamin C. The growth of lung tumors was synergistically inhibited by the combination treatment (p<0.001). Furthermore, exogenous 101F6 promoted intracellular vitamin C uptake, leading to the vitamin C-mediated accumulation of H2O2 in the tumor cells, and these two agents synergistically killed the cells through caspase-independent apoptosis and autophagy cell death pathways. Conclusions: The synergistic and selective antitumor effect of 101F6 nanoparticles plus vitamin C may offer a useful tool for lung cancer prevention and intervention. This abstract is supported by grants from NCI (SPORE P50CA70907) and DOD (TARGET, DAMD17002–1-0706). No significant financial relationships to disclose.


2021 ◽  
Author(s):  
Mingming Jin ◽  
Junqian Zhang ◽  
Yue Wu ◽  
Yitian Dai ◽  
Gang Huang

Abstract Background: Accumulating reports showed how circular RNAs (circRNAs) act importantly during tumor progression via regulating gene expression, but regulatory mechanisms remain largely unknown. Current investigation clarified circRNA regulatory mechanisms in non-small cell lung cancer (NSCLC).Methods: High-throughput sequencing and quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection were utilized to explore circRNA expression in NSCLC tissues and cells. Our lab did statistical analyses and luciferase reporter analysis to validate correlations between circRNA, miRNA and gene expression. We transfected NSCLC cells with different vectors, and transwell migration, Cell Counting Kit-8 (CCK-8) proliferation along with colony formation assays were performed. In vivo tumorigenesis and metastasis assays were utilized to validate the circRNA role in NSCLC.Results: Data illustrated that hsa_circ_0041595 (circ-PSMB6) incremented in NSCLC cell lines and tissues, while circ-PSMB6 downregulation suppressed NSCLC cell proliferation and invasion in vitro and in vivo. Bioinformatics analysis and luciferase reporter data verified that miR-532-5p and Enhancer Of Zeste 1 Polycomb Repressive Complex 2 Subunit (EZH1) were circ-PSMB6 downstream targets in NSCLC cells. Overexpression of EZH1 or miR-532-5p inhibition reversed NSCLC cell invasion and proliferation after silencing circ-PSMB6. Further experiments discovered that circ-PSMB6 can influence cancer stem cell differentiation by regulating miR-532-5p/EZH1.Conclusions: Taken together, we found that circ-PSMB6 suppressed NSCLC metastasis and progression via sponging miR-532-5p and regulating EZH1 expression.


2020 ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yang Yang ◽  
Zhen Zhang ◽  
Quan Wang ◽  
...  

Abstract Background circular RNAs (circRNAs) recently have been emerged as vital regulators for involvement of initiation and progression of diverse kinds of human cancers. This study aimed to investigate the role of circRNAs in colorectal cancer (CRC). Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results hsa_circ_0000231 was evidently up-regulated in CRC primary tissues, which was indicated to poor prognosis of CRC patients. The results demonstrated that hsa_circ_0000231 could promote CRC cell proliferation as well as tumorigenesis in vitro and in vivo. Mechanistic analysis showed that hsa_circ_0000231 might on the one hand act as a ceRNA (competing endogenous RNA) of miR-375 to regulate cyclin D2 (CCND2), and on the other hand bind to IGF2BP3 protein to protect CCND2 from being degraded. Conclusion Our findings suggest that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2. This discovery implied that has_circ_0000231 may be a potential new diagnostic and therapeutic biomarker for CRC.


2021 ◽  
Author(s):  
Huining Fan ◽  
Xiang-Yun Zhao ◽  
Rui Liang ◽  
Xiao-Yu Chen ◽  
Jing Zhang ◽  
...  

Abstract Background: CircRNAs are a new subset of noncoding RNAs formed by covalent closed loops and play crucial roles in the regulation of cancer gene expression. However, the roles and underlying mechanisms of circRNAs in gastric cancer (GC) remain indistinct. This study aimed to explore the role and mechanism of hsa_circ_0006421 (circPTK2) in GC.Methods: The differential expression of circRNAs between GC tissues and adjacent normal tissues were identified by a circRNA expression profiling. Associations of circPTK2 or miR-134-5p expression with clinicopathological characteristics and prognosis of GC patients were analyzed by chi-square of Fisher’s exact tests and Kaplan-Meier analysis. CCK8, colony formation, EdU assays and animal models were performed to assess the effects of circPTK2 on proliferation and invasion of GC cells. CircPTK2-specific probes were used to purify the RNA pulled down from the circPTK2, and enrichment of circPTK2 and miR-134-5p was detected by qRT-PCR. The effects of circPTK2 on miR-134-5p expression and CELF2/PTEN signaling were examined by qRT-PCR and Western blotting analysis. Results: Low expression of circPTK2 and high expression of miR-134-5p were related to the poor survival, and high expression of miR-134-5p was related to the tumor recurrence in GC patients. Overexpressing circPTK2 suppressed the proliferation, colony formation, DNA synthesis and cell invasion as well as xenograft tumor growth and lung metastasis in vitro and in vivo, whereas silencing circPTK2 had the opposite effects. Moreover, circPTK2 was negatively correlated and co-localized with miR-134-5p in the cytoplasm of GC tissue cells. circPTK2 bound to and sponged miR-134-5p in GC cells, and miR-134-5p facilitated cell growth and invasion but attenuated circPTK2 induced tumor suppressive effects and CELF2/PTEN signaling activation in GC cells. Conclusions: circPTK2 functions as a tumor suppressor in GC by sponging miR-134-5p and activating the CELF2/PTEN axis.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kaifeng Zhou ◽  
Jun Xu ◽  
Xiaofan Yin ◽  
Jiangni Xia

Background. Long noncoding RNAs (lncRNAs) played a crucial role in a number of biological processes. lncRNA HAGLROS was demonstrated to facilitate cell proliferation and migration in various cancers. However, the functions and molecular mechanisms of HAGLROS in osteosarcoma remained to be elucidated. Methods. qRT-PCR assay was used to detect the relative expression of HAGLROS in osteosarcoma tissue samples and cells. CCK-8 and Transwell assays were performed to assess the effects of HAGLROS on OS cells proliferation and invasion. Luciferase reporter assay verified the interaction between ROCK1 and miR-152. Results. In our study, we found that the expression of HAGLROS increased osteosarcoma samples and cell lines compared with normal tissues and cells. HAGLROS knockdown inhibited certain functions of U2OS and SW1353 cells in vitro. Moreover, HAGLROS depletion inhibited tumor growth and metastasis in vivo. Mechanically, we found that HAGLROS sponged miR-152 to promote ROCK1 expression in U2OS and SW1353 cells. Conclusion. In summary, our study indicated that HAGLROS could promote osteosarcoma progression by sponging miR-152 to promote ROCK1 expression. The results showed HAGLROS/miR-152/ROCK1 axis might act as a novel therapeutic strategy for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document