scholarly journals Surface Subsidence Control Mechanism and Effect Evaluation of Gangue-Backfilling Mining: A Case Study in China

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Huaizhan Li ◽  
Guangli Guo

Comprehensive mechanization solid backfilling mining is a new technology developed in China for coal mining and surface subsidence control. Based on a gangue-backfilling project in the Yangzhuang Coal Mine, the characteristics of underlying strata and surface deformation were studied by similar-material simulation method. When the ratio of the sponge to foam was 1 : 3, the mixture can simulate well the deformation characteristics of gangues in the similar-material model. On this basis, the movement and deformation characteristics of the overlying strata caused by gangue-backfilling mining were studied. The findings indicate that compared with caving mining, the expansion coefficient of overlying strata, the interlayer fracture, and the subsidence value were smaller in backfilling mining, with the integral overlying strata subsidence occurring. Meanwhile, the reduction ratio of surface subsidence after backfilling mining was more than 85%, verified by the subsidence-monitoring results. The research outcomes in this paper have significance for coal resource exploitation of similar mines around the world.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhengkai Yang ◽  
Zhiheng Cheng ◽  
Zhenhua Li ◽  
Chunyuan Li ◽  
Lei Wang ◽  
...  

The aim of this study is to obtain movement laws of overlying strata above a fully mechanized coal mining face backfilled with gangue and solve the problem of surface subsidence during coal mining. This study was carried out based on gangue backfilling mining of Jiulishan Coal Mine (Jiaozuo City, Henan Province, China) from the perspectives of deformation of backfilled gangue under compaction, surrounding rock of a stope, and activities of key strata. The method combining with rock mechanics, viscoelastic mechanics, control theory of rock mass under mining, and numerical simulation was used based on physical and mechanical characteristics of backfilled gangue. On this basis, the research analyzed the temporal-spatial relationships of activities of surrounding rock of the stope, compressive deformation of backfilling body, failure depth of the floor, deformation characteristics of the main roof with laws of surface subsidence. The movement characteristics of overlying strata above the fully mechanized coal mining face backfilled with gangue and the traditional fully mechanized mining face were compared. It is found that, under the same conditions of overlying strata, movement laws of overlying strata are mainly determined by the mining height of coal seams and the heights of a caving zone and a fracture zone are nearly linearly correlated with the mining height. Through analysis based on thin-plate theory and key stratum theory, the location of the main roof of the fully mechanized coal mining face backfilled with gangue in coal seams first bending and sinking due to load of overlying strata was ascertained. Then, it was determined that there are two key strata and the main roof belongs to the inferior key stratum. By using the established mechanical model for the main roof of the fully mechanized coal mining face backfilled with gangue and the calculation formula for the maximum deflection of the main roof, this research presented the conditions for breaking of the main roof. In addition, based on the theoretical analysis, it is concluded that the main roof of the fully mechanized coal mining face backfilled with gangue does not break, but bends. The numerical simulation results demonstrate that, with the continuous increase of strength of backfilled gangue, the stress concentration degree of surrounding rock reduces constantly, so does its decrease amplitude. Moreover, the compressive deformation of backfilling, failure depth of the floor, and bending and subsidence of the main roof continuously decrease and tend to be stable. The mechanical properties of backfilling materials determine effects of gangue backfilling in controlling surface subsidence. Gangue backfilling can effectively control movement of overlying strata and surface subsidence tends to be stable with the increase of elastic modulus of gangue.


2014 ◽  
Vol 675-677 ◽  
pp. 1385-1394
Author(s):  
Cheng Rong Jiang ◽  
Liu Yang ◽  
Hao Xie ◽  
Hua Yi Huang ◽  
De Ke Sun

In combination with the geological conditions of Tie'er mining area in Tangshan coal mining, this paper not only analyzes the evolution of overlying strata structure in stope and the development law of overlying strata separation, also proposes a new continuous grouting technology with large flow and high concentration slurry. The industrial test showed that, when the grout-mining ratio of the whole mining area is 25.3%, the reducing subsidence ratio is 51.5%, the effect of reducing the surface subsidence is good. According to the chemical analysis of water quality ingredients of slurry, the test result showed, heavy metals contents in fly-ash slurry water do not exceed the standard, which has no bad effect on the fissure water in the bedrock.


2006 ◽  
Vol 306-308 ◽  
pp. 1403-1408 ◽  
Author(s):  
Chong Ge Wang ◽  
Wei Zhong Chen ◽  
Liyou Pan

The stratum movement and surface subsidence is considered as a whole system in the research work. The key of the surface subsidence control lies first in having thorough knowledge of the dynamic changeable of the overlaying strata movement as the face advances so as to establish the corresponding structure mechanics subsidence model in flat seam and deep mining. The common characteristic of stratum movement and the development procedure of crack arch are described in this paper. The structure constituents of subsidence and their influencing factors are also analyzed. Meanwhile, the surface subsidence is determined by the compressing of coal wall and the bending of the overlying strata. Based on the ground observation by the global positioning system, the boundary angle and the motion angle are determined. Furthermore, according to the research law, one can predict and control the surface subsidence damages for the special geologic conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baiyi Li ◽  
Nan Zhou ◽  
Wenyue Qi ◽  
Ailing Li ◽  
Zhizhong Cui

Deep resource exploitation is imperative, but it is facing with more complicated mining environment and more dangerous mining disturbances to induce the potential catastrophe process. Solid backfill technology, which can control the strata movement and prevent potential hazards, has been used as the primary method in deep mining for surface subsidence control and ecosystem protection. In this study, taking backfill mining area no. 930 in the Tangkou coal mine as background, the probability integral model was adopted to predict the surface subsidence at different mining depths and filling ratios. The filling ratio was designed for deep mining based on the regression analysis of the predicted surface subsidence results. The study shows that the backfilling ratio at the Tangkou deep coal mining area should be controlled at a level greater than 82.5%, and the mining damage to the surface under this condition was analyzed. Furthermore, control strategies for deep backfill mining are proposed in which the backfill density can be enhanced by optimizing the tamping machine, material composition, and tamping process. Finally, the measurement of the backfill mass and surface subsidence showed that the actual filling ratio was controlled at 82.57%, which ensures adequate protection of the surface buildings during the mining process.


2014 ◽  
Vol 915-916 ◽  
pp. 108-113
Author(s):  
Wei Kai Zong

Shield construction will cause surface subsidence, and the presence of underground structures above the tunnel has an impact on surface subsidence. Based on this, with the engineering of undercross shield tunnel construction on railway station as background, used numerical simulation method to analyze the effect of surface subsidence of underground passage, and studied the influence of depth and width of underpasses on ground movement induced. The results show that: The impact of the underground passage to the wire surface subsidence caused by the shield cannot be ignored. Surface subsidence caused by double shield will be decreased because of the existence of the underground passage, and that related to the channel depth and width. The greater the depth of underground channel, the greater the surface subsidence; greater the underground channel width, the smaller surface subsidence. Meanwhile, the surface subsidence trough width and the largest settlement scope unrelated to the depth of underground tunnels but the underground channel width, and increases with the increasing of the underpass width.


2021 ◽  
Vol 13 (23) ◽  
pp. 4841
Author(s):  
Yaru Zhu ◽  
Haijun Qiu ◽  
Zijing Liu ◽  
Jiading Wang ◽  
Dongdong Yang ◽  
...  

Information about the long-term spatiotemporal evolution of landslides can improve the understanding of landslides. However, since landslide deformation characteristics differ it is difficult to monitor the entire movement of a landslide using a single method. The Interferometric Synthetic Aperture Radar (InSAR) and pixel offset tracking (POT) method can complement each other when monitoring deformation at different landslide stages. Therefore, the InSAR and improved POT method were adapted to study the pre- and post-failure surface deformation characteristics of the Gaojiawan landslide to deepen understanding of the long-term spatiotemporal evolution characteristics of landslides. The results show that the deformation displacement gradient of the Gaojiawan landslide exhibited rapid movement that exceeded the measurable limit of InSAR during the first disaster. Moreover, the Gaojiawan landslide has experienced long-term creep, and while studying the post-second landslide’s failure stability, the acceleration trend was identified via time series analysis, which can be used as a precursor signal for landslide disaster warning. Our study aims to provide scientific reference for local governments to help prevent and mitigate geological disasters in this region.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1391
Author(s):  
Lanxin Jiang ◽  
Bing Yang ◽  
Shoune Xiao ◽  
Guangwu Yang ◽  
Tao Zhu ◽  
...  

In order to study the interfacial adhesive material simulation method of a sandwich structure with aluminum alloy panels and a low-density foam core under edgewise compression condition, two finite element models were defined using material model no. 185 (MAT 185) adhesive element and tiebreak contact, respectively, by LS-DYNA. Under the conditions of different loading rates, and element sizes, the effects of peak load, energy absorption, failure mode of adhesive layer and the influence degree of the changing condition on the calculated results were compared between the two models, and then compared with the experiment results and theoretical results. The higher the loading rate was, or the smaller the element size was, the higher the peak load was. The simulation results obtained using MAT 185 were closer to the experimental results under the edgewise compression condition.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3480 ◽  
Author(s):  
Zhanjie Feng ◽  
Wenbing Guo ◽  
Feiya Xu ◽  
Daming Yang ◽  
Weiqiang Yang

Mining-induced surface subsidence causes a series of environmental hazards and social problems, including farmland destruction, waterlogging and building damage in the subsidence area. To reduce mining damages, an innovative method of controlling the surface movement scope via artificial weak planes generated by hydraulic fracturing technology was proposed in this paper. Numerical models were built to analyze the influence of weak planes with different heights and dips on the overlying strata movement. The numerical simulation results showed that the weak planes structure cut off the development of the overlying strata displacement to the surface and affected the surface movement scope. When the weak planes’ dips were bigger than the angle of critical deformation, with the increase of the weak planes’ heights (0–120 m) the advance angle of influence changed from 53.61° to 59.15°, and the advance distance of influence changed from 173.31 m to 140.27 m which decreased by 30.04 m. In applications at Sihe coal mine in China, directional hydraulic fracturing technology was used in panel 5304 to form artificial weak planes in overlying strata. The measured surface subsidence and deformation value met the numerical simulation results and the mining-induced surface movement scope reduced. Moreover, no damage occurred to the surface buildings which were predicted to be in the affected area after extraction. This technology provided a new method to protect the surface structures from damages and had great benefits for the sustainable development of coal mines.


2011 ◽  
Vol 299-300 ◽  
pp. 110-113
Author(s):  
Hai Xia Sun ◽  
Hai Yu Wu ◽  
Si Li Chen

Against the background of shenyang subway shield tunnel construction, the method of numerical simulation methods are used to analyze the factors of surface subsidence caused by shield construction comprehensively, and the universal finite element program ABAQUS is used to establish mechanical model depended on comprehensive consideration the influence factors of soil warehouses pressure, seepage and groundwater. A dynamic finite element simulation of shield advance process and conclude the surface deformation rule of soil are studied.


Sign in / Sign up

Export Citation Format

Share Document