scholarly journals Methane-Rich Saline Ameliorates Sepsis-Induced Acute Kidney Injury through Anti-Inflammation, Antioxidative, and Antiapoptosis Effects by Regulating Endoplasmic Reticulum Stress

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yifan Jia ◽  
Zeyu Li ◽  
Yang Feng ◽  
Ruixia Cui ◽  
Yanyan Dong ◽  
...  

Sepsis-induced acute kidney injury (AKI) is a severe complication of sepsis and an important cause of mortality in septic patients. Previous investigations showed that methane had protective properties against different diseases in animal models. This study is aimed at investigating whether methane-rich saline (MRS) has a protective effect against sepsis-induced AKI. Sepsis was induced in wild-type C57BL/6 mice by cecal ligation and puncture (CLP), and the mice were divided into three groups: a sham control group (sham), a surgery group with saline intraperitoneal injection (i.p.) treatment (CLP + NS), and a surgery group with MRS i.p. treatment (CLP + MRS). 24 h after the establishment of the sepsis, the blood and kidney tissues of mice in all groups were collected. According to the serum levels of blood urea nitrogen (BUN) and creatinine (CRE) and a histologic analysis, which included hematoxylin-eosin (H&E) staining and periodic acid-Schiff (PAS) staining, MRS treatment protected renal function and tissues from acute injury. Additionally, MRS treatment significantly ameliorated apoptosis, based on the levels of apoptosis-related protein makers, including cleaved caspase-3 and cleaved PARP, and the levels of Bcl-2/Bax expression and TUNEL staining. In addition, the endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78)/activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP)/caspase-12 apoptosis signaling pathway was significantly suppressed in the CLP + MRS group. The levels of inflammation and oxidative stress were also reduced after MRS treatment. These results showed that MRS has the potential to ameliorate sepsis-induced acute kidney injury through its anti-inflammatory, antioxidative, and antiapoptosis properties.

2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xudong Wang ◽  
Yali Wang ◽  
Mingjian Kong ◽  
Jianping Yang

Abstract Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.


2020 ◽  
Vol 43 (2) ◽  
pp. E24-34
Author(s):  
Yuhan Cao ◽  
Qiancheng Xu, MD Xu ◽  
Can Liu ◽  
Cong Fu

Purpose: CD11b+Gr-1+ cells play a key role in inflammation and the purpose of this study was to determine whether splenic CD11b+Gr-1+ cells are mobilized to the kidney and lead to acute kidney injury during sepsis. Methods: The sepsis model was generated via cecum ligation and puncture (CLP). The mice were randomly distributed into control, sham operated, CLP and CLP+splenectomy (CLPS) groups (n=5–10/group). The percentage of CD11b+Gr-1+ cells in circulating, bone marrow and spleen were determined. Plasma concentrations of interleukin-6, interleukin-1β, creatinine (Cr) and neutrophil gelatinase-associated lipocalin were measured. CD11b+Gr-1+ cells were detected by immunofluorescence and qRT-PCR. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) were performed. Expression of mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 was measured. Results: The percentage of CD11b+Gr-1+ cells in blood was significantly higher in the CLP group and lower in CLPS group. CD11b+Gr-1+ cells in the spleen were significantly lower in the CLP group. In the CLP group, the plasma concentrations of interleukin-6, interleukin-1β, Cr and neutrophil gelatinaseassociated lipocalin were higher. The expression of Gr-1 and CD11b were higher in CLP. The CD11b+Gr-1+ cells were detected in the kidneys of the CLP group. HE, PAS and TUNEL showed inflammatory cell infiltration and cell apoptosis in CLP. Western blot indicated dephosphorylation of mTOR, down-expression of HIF-1α and increased expression of cleaved caspase-3 in sepsis kidney. Conclusion: Splenic CD11b+Gr-1+ cells migrated to the kidney in sepsis, which led to acute kidney injury via the inhibition of mTOR/HIF-1α.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Haibing Sun ◽  
Huiping Jiang ◽  
Amity Eliaz ◽  
John A. Kellum ◽  
Zhiyong Peng ◽  
...  

Abstract Background Galectin-3 (Gal-3) is a pleiotropic glycan-binding protein shown to be involved in sepsis and acute kidney injury (AKI). However, its role has never been elucidated in sepsis-associated AKI (S-AKI). We aimed to explore Gal-3’s role and its potential utility as a therapeutic target in S-AKI. Methods In 57 patients admitted to the intensive care unit (ICU) with sepsis, serum Gal-3 was examined as a predictor of ICU mortality and development of AKI. In a rat model of S-AKI induced by cecal ligation and puncture (CLP), 7-day mortality and serum Gal-3, Interleukin-6 (IL-6), and creatinine were examined at 2, 8, and 24 hours (h) post-CLP. Two experimental groups received the Gal-3 inhibitor modified citrus pectin (P-MCP) at 400 mg/kg/day and 1200 mg/kg/day, while the control group received water only (n = 18 in each group). Results Among 57 patients, 27 developed AKI and 8 died in the ICU. Serum Gal-3 was an independent predictor of AKI (OR = 1.2 [95% CI 1.1–1.4], p = 0.01) and ICU mortality (OR = 1.4 [95% CI 1.1–2.2], p = 0.04) before and after controlling for age, AKI, and acute physiology and chronic health evaluation (APACHE II) score. In the CLP rat experiment, serum Gal-3 peaked earlier than IL-6. Serum Gal-3 was significantly lower in both P-MCP groups compared to control at 2 h post-CLP (400 mg: p = 0.003; 1200 mg: p = 0.002), and IL-6 was significantly lower in both P-MCP groups at all time points with a maximum difference at 24 h post-CLP (400 mg: p = 0.015; 1200 mg: p = 0.02). In the Gal-3 inhibitor groups, 7-day mortality was significantly reduced from 61% in the control group to 28% (400 mg P-MCP: p = 0.03) and 22% (1200 mg P-MCP: p = 0.001). Rates of AKI per RIFLE criteria were significantly reduced from 89% in the control group to 44% in both P-MCP groups (400 mg: p = 0.007; 1200 mg: p = 0.007). Conclusions This translational study demonstrates the importance of Gal-3 in the pathogenesis of S-AKI, and its potential utility as a therapeutic target. Graphic abstract


2021 ◽  
Author(s):  
Alexis Piedrafita ◽  
Stéphane Balayssac ◽  
Nicolas Mayeur ◽  
Stéphane Gazut ◽  
Julia Grossac ◽  
...  

Abstract Background Down-regulation of the enzymes involved in tryptophan-derived nicotinamide (NAM) adenine dinucleotide (NAD+) production was identified after acute kidney injury (AKI), leading to the hypothesis that supplementation with NAM may increase the kidney NAD+ content, rescuing tryptophan pathways and subsequently improving kidney outcomes. Methods Urinary measurement of tryptophan and kynurenin using liquid chromatography–mass spectrometry metabolomics was used in a cohort of 167 cardiac bypass surgery patients along with tests for correlation to the development of postoperative AKI. A mouse model of ischaemic AKI using ischaemia–reperfusion injury (bilateral clamping of renal arteries for 25 min) was also used. Results We identified a significant decrease in urinary tryptophan and kynurenin in patients developing AKI, irrespective of the Kidney Disease: Improving Global Outcomes (KDIGO) stage. Although a significant difference was observed, tryptophan and kynurenin moderately discriminated for the development of all AKI KDIGO stages {area under the curve [AUC] 0.82 [95% confidence interval (CI) 0.75–0.88] and 0.75 [0.68–0.83], respectively} and severe KDIGO Stages 2–3 AKI [AUC 0.71 (95% CI 0.6–0.81) and 0.66 (0.55–0.77), respectively]. Sparked by this confirmation in humans, we aimed to confirm the potential preventive effect of NAM supplementation in wild-type male and female C57BL/6 mice subjected to ischaemic AKI. NAM supplementation had no effect on renal function (blood urea nitrogen at Day 1, sinistrin–fluorescein isothiocyanate glomerular filtration rate), architecture (periodic acid–Schiff staining) and injury or inflammation (kidney injury molecule 1 and IL18 messenger RNA expression). In addition, NAM supplementation did not increase post-AKI NAD+ kidney content. Conclusion Notwithstanding the potential role of NAM supplementation in the setting of basal NAD+ deficiency, our findings in mice and the reanalysis of published data do not confirm that NAM supplementation can actually improve renal outcomes after ischaemic AKI in unselected animals and probably patients.


2021 ◽  
Author(s):  
Haibing Sun ◽  
Huiping Jiang ◽  
Amity Eliaz ◽  
John A. Kellum ◽  
Zhiyong Peng ◽  
...  

Abstract Background Galectin-3 (Gal-3) is a pleiotropic glycan-binding protein shown to be involved in sepsis and acute kidney injury (AKI). However, its role has never been elucidated in sepsis-associated AKI (S-AKI). We aimed to explore Gal-3’s role and its potential utility as a therapeutic target in S-AKI. MethodsIn 57 patients admitted to the intensive care unit (ICU) with sepsis, serum Gal-3 was examined as a predictor of ICU mortality and AKI. In a rat model of S-AKI induced by cecal ligation and puncture (CLP), 7-day mortality and serum Gal-3, IL-6, and creatinine were examined at baseline, 2, 8, and 24 hours (h) post-CLP. Two experimental groups received the Gal-3 inhibitor modified citrus pectin (P-MCP) at 400 mg/kg/day and 1200 mg/kg/day, while the control group received water only (n = 18 in each group). ResultsAmong 57 patients, 27 developed AKI and 8 died in the ICU. Serum Gal-3 was an independent predictor of AKI (OR = 1.2 [95% CI 1.1-1.4], p = 0.01) and ICU mortality (OR = 1.4 [95% CI 1.1-2.2], p = 0.04) before and after controlling for age, AKI, and acute physiology and chronic health evaluation (APACHE II) score. In the CLP rat experiment, serum Gal-3 peaked earlier than Interleukin-6 (IL-6). Serum Gal-3 was significantly lower in both P-MCP-treated groups compared to control at 2 h post-CLP (400 mg: p = 0.003; 1200 mg: p = 0.002), and IL-6 was significantly lower in both P-MCP-treated groups at all time points with a maximum difference at 24 h post-CLP (400 mg: p = 0.015; 1200 mg: p = 0.02). In the Gal-3 inhibitor groups, 7-day mortality was significantly reduced from 61% in the control group to 28% (400 mg P-MCP: p = 0.03) and 22% (1200 mg P-MCP: p = 0.001). Rates of AKI per RIFLE criteria were significantly reduced from 89% in the control group to 44% in both P-MCP-treated groups (400mg: p = 0.007; 1200mg: p = 0.007). ConclusionsThis translational study demonstrates the importance of Gal-3 in the pathogenesis of S-AKI, and its potential utility as a therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Xuan ◽  
Yu-Meng Xi ◽  
Yu-Di Zhang ◽  
Chun-He Tao ◽  
Lan-Yue Zhang ◽  
...  

Diabetic nephropathy (DN), a common microvascular complication of diabetes, is one of the main causes of end-stage renal failure (ESRD) and imposes a heavy medical burden on the world. Yiqi Jiedu Huayu decoction (YJHD) is a traditional Chinese medicine formula, which has been widely used in the treatment of DN and has achieved stable and reliable therapeutic effects. However, the mechanism of YJHD in the treatment of DN remains unclear. This study aimed to investigate the mechanism of YJHD in the treatment of DN. Sprague-Dawley rats were randomly divided into a normal control group, a diabetic group, an irbesartan group, and three groups receiving different doses of YJHD. Animal models were constructed using streptozotocin and then treated with YJHD for 12 consecutive weeks. Blood and urine samples were collected during this period, and metabolic and renal function was assessed. Pathological kidney injury was evaluated according to the kidney appearance, hematoxylin-eosin staining, Masson staining, periodic-acid Schiff staining, periodic-acid Schiff methenamine staining, and transmission electron microscopy. The expression levels of proteins and genes were detected by immunohistochemistry, western blotting, and real-time qPCR. Our results indicate that YJHD can effectively improve renal function and alleviate renal pathological injury, including mesangial matrix hyperplasia, basement membrane thickening, and fibrosis. In addition, YJHD exhibited podocyte protection by alleviating podocyte depletion and morphological damage, which may be key in improving renal function and reducing renal fibrosis. Further study revealed that YJHD upregulated the expression of the autophagy-related proteins LC3II and Beclin-1 while downregulating p62 expression, suggesting that YJHD can promote autophagy. In addition, we evaluated the activity of the mTOR pathway, the major signaling pathway regulating the level of autophagy, and the upstream PI3K/Akt and AMPK pathways. YJHD activated the AMPK pathway while inhibiting the PI3K/Akt and mTOR pathways, which may be crucial to its promotion of autophagy. In conclusion, our study shows that YJHD further inhibits the mTOR pathway and promotes autophagy by regulating the activity of the PI3K/Akt and AMPK pathways, thereby improving podocyte injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research into YJHD.


2021 ◽  
Author(s):  
TT Yu ◽  
FL Cai ◽  
J Niu

AbstractObjectiveSeptic acute kidney injury (AKI) is an important cause of death in patients with sepsis. This study sought to explore the function of the long noncoding RNA, urothelial carcinoma associated 1 (lncRNA-UCA1), in septic AKI and determine the underlying molecular mechanism.MethodsHK-2 cells were treated with lipopolysaccharide (LPS) to establish an in vitro model of septic AKI. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of lncRNA-UCA1. CCK-8 assay was used to detect the viability of HK-2 cells. Western blotting was utilized to examine protein expression. The contents of SOD, GSH, MDA, and ROS were determined using commercial kits. The apoptosis rate was calculated using TUNEL staining and flow cytometry.ResultsLncRNA-UCA1 was down-regulated in LPS-treated HK-2 cells. LPS significantly reduced the content of SOD and GSH in HK-2 cells, increased the production of MDA and ROS, and led to an increase in the rate of apoptosis. However, overexpression of lncRNA-UCA1 protected HK-2 cells from oxidative stress and apoptosis. Furthermore, LPS induced endoplasmic reticulum (ER) stress in HK-2 cells, which was inhibited by overexpression of lncRNA-UCA1.ConclusionOverexpression of lncRNA-UCA1 inhibited LPS-induced oxidative stress and apoptosis of HK-2 cells by suppressing ER stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yi Zhang ◽  
Bo Hu ◽  
Mingyang Wang ◽  
Jingjing Tong ◽  
Jianwen Pan ◽  
...  

This study assessed the molecular mechanism of selenium (Se) protecting against kidney injury induced by zearalenone (ZEA) in mice. The experimental mice were divided into 4 groups including the control group, the Se group, the ZEA group, and the Se+ZEA group; ZEA and Se were administered orally for 28 days. The changes in renal biochemical index (BUN, UA, and CRE), biochemical change of kidney damage such as BUN, UA, and CRE, and oxidative damage such as MDA, T-SOD, and GSH-Px were investigated. Pathological sections and TUNEL staining were used to analyze renal pathological changes and cell apoptosis. qRT-PCR and Western blot were employed to detect the expression of genes and proteins which were related with endoplasmic reticulum stress. The results showed that ZEA increased the concentration of BUN, UA, and CRE and the content of MDA and decreased the activities of T-SOD and GSH-Px in the mouse kidneys. However, Se reversed above changes of the biochemical and antioxidant indexes of renal injury. Moreover, the results also showed that ZEA can increase the expression of Bax, caspase-12, caspase-3, Bip, CHOP, JNK protein, and mRNA and decrease the expression of Bcl-2 protein and mRNA. But Se reversed these proteins and genes related to endoplasmic reticulum stress and apoptosis. It can be concluded that Se protected against the kidney damage induced by ZEA. Se may protect the kidney from ZEA-induced apoptosis and oxidative stress by inhibiting ERS.


2018 ◽  
Vol 132 (7) ◽  
pp. 825-838 ◽  
Author(s):  
Yunwen Yang ◽  
Xiaowen Yu ◽  
Yue Zhang ◽  
Guixia Ding ◽  
Chunhua Zhu ◽  
...  

Renal hypoxia occurs in acute kidney injury (AKI) of various etiologies. Activation of hypoxia-inducible transcription factor (HIF) has been identified as an important mechanism of cellular adaptation to low oxygen. Preconditional HIF activation protects against AKI, suggesting a new approach in AKI treatment. HIF is degraded under normoxic conditions mediated by oxygen-dependent hydroxylation of specific prolyl residues of the regulative α-subunits by HIF prolyl hydroxylases (PHD). FG-4592 is a novel, orally active, small-molecule HIF PHD inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). The current study aimed to evaluate the effect of FG-4592 (Roxadustat) on cis-diamminedichloroplatinum (cisplatin)-induced kidney injury. In mice, pretreatment with FG-4592 markedly ameliorated cisplatin-induced kidney injury as shown by the improved renal function (blood urea nitrogen (BUN), serum creatinine (Scr), and cystatin C) and kidney morphology (periodic acid-Schiff (PAS) staining) in line with a robust blockade of renal tubular injury markers of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in FG-4592-treated mice. Along with the protective effects shown above, FG-4592 pretreatment strongly enhanced HIF-1α in tubular cells, as well as the expressions of HIF target genes. FG-4592 alone did not affect the renal function and morphology in mice. In vitro, FG-4592 treatment significantly up-regulated HIF-1α and protected the tubular cells against cisplatin-induced apoptosis. In summary, FG-4592 treatment remarkably ameliorated the cisplatin-induced kidney injury possibly through the stabilization of HIF. Thus, besides the role in treating CKD anemia, the clinical use of FG-4592 also could be extended to AKI.


Author(s):  
J. R. Ruby

Parotid glands were obtained from five adult (four male and one female) armadillos (Dasypus novemcinctus) which were perfusion-fixed. The glands were located in a position similar to that of most mammals. They extended interiorly to the anterior portion of the submandibular gland.In the light microscope, it was noted that the acini were relatively small and stained strongly positive with the periodic acid-Schiff (PAS) and alcian blue techniques, confirming the earlier results of Shackleford (1). Based on these qualities and other structural criteria, these cells have been classified as seromucous (2). The duct system was well developed. There were numerous intercalated ducts and intralobular striated ducts. The striated duct cells contained large amounts of PAS-positive substance.Thin sections revealed that the acinar cells were pyramidal in shape and contained a basally placed, slightly flattened nucleus (Fig. 1). The rough endoplasmic reticulum was also at the base of the cell.


Sign in / Sign up

Export Citation Format

Share Document