scholarly journals Effect of Silver Nanowire Plasmons on Graphene Oxide Coatings Reduction for Highly Transparent Electrodes

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xingzhen Yan ◽  
Lu Zhou ◽  
Xuefeng Chu ◽  
Huan Wang ◽  
Fan Yang ◽  
...  

We prepared transparent conducting composite electrodes composed of silver nanowires (Ag NWs) and reduced graphene oxide (r-GO). We present a simple approach to welding the cross-positions of the Ag NWs by applying pressure at a relatively low temperature (100°C). We examined the Ag NWs/r-GO composite films in terms of their transmission, conductivity, and stability. The plasmonic features of the Ag NWs were used to assist the ultraviolet (UV) light-induced reduction of the GO coating. The r-GO coatings used to form Ag NWs/r-GO composite structures increased the conductivity of the film by providing more efficient electron conductive pathways. The G/D intensity ratios of the GO and r-GO produced by the UV light-induced method without and with Ag NWs were 0.95, 1.01, and 1.04, respectively. The lowest sheet resistance of the composite films was 7 ohm/sq with approximately 82% transparency in the visible spectrum region. No degradation of the films was observed after 2 months. This excellent environmental stability might facilitate applications of Ag NWs/r-GO composite films in optoelectronic devices.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 468 ◽  
Author(s):  
Xin He ◽  
Gengzhe Shen ◽  
Ruibin Xu ◽  
Weijia Yang ◽  
Chi Zhang ◽  
...  

Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters—mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape—have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 kΩ for the hexagonal grid and 77.3% and 8.78 kΩ for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.


Author(s):  
Xingzhen Yan ◽  
Bo Li ◽  
Kaian Song ◽  
Fan Yang ◽  
Yanjie Wang ◽  
...  

Abstract We have prepared an ultra-thin flexible transparent conductive electrode with high folding endurance composed of randomly arranged silver nanowires (AgNWs) embedded in polydimethylsiloxane (PDMS). A simple preparation method was performed to connect a glass substrate coated with a AgNW network and a glass substrate coated with PDMS. The glass substrate was then removed after the PDMS solidified, and the AgNW–PDMS composite film was peeled off. Moreover, the problem of the high contact resistance caused by the random arrangement of AgNWs was solved by the local joule heat generated by applying voltage to both sides of the AgNW–PDMS composite structure to weld the overlapping AgNWs. The sheet resistance (Rs ) of AgNW–PDMS composite films with different AgNW deposition concentrations decreased by 46.4%–75.8% through this electro-sintering treatment. The embedded structure of the AgNW–PDMS composite ensures better voltage resistance and environmental stability under high temperature and humidity conditions compared with a AgNW network attached to a glass substrate. Additionally, the substrate-free, excellent elasticity and high resilience characteristics resulted in the Rs value of the same composite electrode only increasing by 2.9 ohm/sq after folding four times. The advantage of the metal thermal conductivity makes the joule heat generated by electric injection rapidly diffuse and dissipate in the AgNW-based transparent heater with faster response time and smaller voltage drive than indium tin oxide.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 517 ◽  
Author(s):  
Jianhua Zhang ◽  
Yiru Li ◽  
Bo Wang ◽  
Huaying Hu ◽  
Bin Wei ◽  
...  

The development of silver nanowire electrodes is always limited due to some disadvantages, such as roughness, oxidative properties, and other disadvantages. In this research, a capillary-welded silver nanowire/graphene composite film was used as an electrode for organic light-emitting diode (OLED) devices. As an encapsulation layer, graphene reduced the surface roughness and the oxidation probability of silver nanowires. The composite electrode showed an excellent transmittance of 91.5% with low sheet resistant of 26.4 ohm/sq. The devices with the silver nanowire/graphene composite electrode emitted green electroluminescence at 516 nm, and the turn-on voltage was about 3.8 V. The maximum brightness was 50810 cd/cm2, which is higher than the indium tin oxide-based (ITO-based) devices with the same configuration. Finally, it was proved that the silver nanowire/graphene composite electrodes possessed better heat dissipation than the ITO-based ones under energization. In summary, it means that this novel silver nanowires/graphene electrode has great potential in OLED device applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (63) ◽  
pp. 50878-50882 ◽  
Author(s):  
Ning Qi ◽  
Bing Zhao ◽  
Shu-Dong Wang ◽  
Salem S. Al-Deyab ◽  
Ke-Qin Zhang

Silver nanowire-coated silk fibroin composite films assisted by ion sputtering exhibited excellent flexibility, conductivity, which used to light LED device.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47185-47191 ◽  
Author(s):  
Bo-Tau Liu ◽  
Zheng-Tang Wang

Graphene oxide/PEDOT:PSS hybrid isolates silver nanowires to makes the silver nanowire working electrodes feasible for dye-sensitized solar cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1360
Author(s):  
Pengchang Wang ◽  
Chi Zhang ◽  
Majiaqi Wu ◽  
Jianhua Zhang ◽  
Xiao Ling ◽  
...  

The transparent conductive films (TCFs) based on silver nanowires are expected to be a next-generation electrode for flexible electronics. However, their defects such as easy oxidation and high junction resistance limit its wide application in practical situations. Herein, a method of coating Ti3C2Tx with different sizes was proposed to prepare silver nanowire/MXene composite films. The solution-processed silver nanowire (AgNW) networks were patched and welded by capillary force effect through the double-coatings of small and large MXene nanosheets. The sheet resistance of the optimized AgNW/MXene TCFs was 15.1 Ω/sq, the optical transmittance at 550 nm was 89.3%, and the figure of merit value was 214.4. Moreover, the AgNW/MXene TCF showed higher stability at 1600 mechanical bending, annealing at 100 °C for 50 h, and exposure to ambient air for 40 days. These results indicate that the novel AgNW/MXene TCFs have a great potential for high-performance flexible optoelectronic devices.


2018 ◽  
Vol 6 (47) ◽  
pp. 12940-12947 ◽  
Author(s):  
Jialin Liu ◽  
Tengyu He ◽  
Guangqiang Fang ◽  
Ranran Wang ◽  
Elbadawy A. Kamoun ◽  
...  

Two kinds of silk nanofibril/silver nanowire composite films were fabricated by using a facile vacuum-filtration method, and can act as a humidity sensor or a pressure sensor.


2020 ◽  
Author(s):  
Zhiyuan Chen ◽  
Nicolas Boyajian ◽  
Zexu Lin ◽  
Rose T. Yin ◽  
Sofian N. Obaid ◽  
...  

AbstractTransparent microelectrodes have recently emerged as a promising approach to combine electrophysiology with optophysiology for multifunctional biointerfacing. High-performance flexible platforms that allow seamless integration with soft tissue systems for such applications are urgently needed. Here, silver nanowires (Ag NWs)-based transparent microelectrodes and interconnects are designed to meet this demand. The Ag NWs percolating networks are patterned on flexible polymer substrates using an innovative photolithography-based solution-processing technique. The resulting nanowire networks exhibit a high average optical transparency of 76.1-90.0% over the visible spectrum, low normalized electrochemical impedance of 3.4-15 Ω cm2 at 1 kHz which is even better than those of opaque solid Ag films, superior sheet resistance of 11-25 Ω sq−1, excellent mechanical stability up to 10,000 bending cycles, good biocompatibility and chemical stability. Studies on Langendorff-perfused mouse and rat hearts demonstrate that the Ag NWs microelectrodes enable high-fidelity real-time monitoring of heart rhythm during co-localized optogenetic pacing and optical mapping with negligible light-induced electrical artifacts. This proof-of-concept work illustrates that the solution-processed, transparent, and flexible Ag NWs networks are a promising candidate for the next-generation of large-area multifunctional biointerfaces for interrogating complex biological systems in basic and translational research.


2018 ◽  
Vol 55 ◽  
pp. 82-90
Author(s):  
Feng Duan ◽  
Wei Jia Yang ◽  
Xin He ◽  
Jia Yi Jiang ◽  
Wan Yu Zhu ◽  
...  

In this work, we fabricated a flexible silver nanowires (Ag NWs)/graphene transparent conducting film on polyethylene terephthalate (PET) substrate, which was applied in an electrochromic device. The graphene layer was coated on the surface of the Ag NW film utilizing the electrostatic adsorption in order to improve the stability of the metallic nanowire layer and the performance of the electrochromic device. The Ag NWs/graphene composite film exhibited an optical transmittance of 82.5% at 550 nm and a sheet resistance of 57.5 Ω/sq. With the concentration of the adsorbed graphene increased, the transmittance and conductivity of the composite film both decreased. Furthermore, the lifetime of the electrochromic devices based on the tungsten oxide (WO3) thin film and the Ag NW/graphene composite electrodes was greatly extended, compared to that utilizing the pristine Ag NW electrodes. The results indicate that the introduction of the graphene layer could protect the Ag NW film from corrosion of the electrolyte layer, and greatly improve the lifetime and cycle numbers of the electrochromic device. Key words: silver nanowire; graphene; transparent electrode; electrochromic devices


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 372 ◽  
Author(s):  
Jinjin Luan ◽  
Qing Wang ◽  
Xu Zheng ◽  
Yao Li ◽  
Ning Wang

To avoid conductive failure due to the cracks of the metal thin film under external loads for the wearable strain sensor, a stretchable metal/polymer composite film embedded with silver nanowires (AgNWs) was examined as a potential candidate. The combination of Ag film and AgNWs enabled the fabrication of a conductive film that was applied as a high sensitivity strain sensor, with gauge factors of 7.1 under the applied strain of 0–10% and 21.1 under the applied strain of 10–30%. Furthermore, the strain sensor was demonstrated to be highly reversible and remained stable after 1000 bending cycles. These results indicated that the AgNWs could act as elastic conductive bridges across cracks in the metal film to maintain high conductivity under tensile and bending loads. As such, the strain sensor engineered herein was successfully applied in the real-time detection and monitoring of large motions of joints and subtle motions of the mouth.


Sign in / Sign up

Export Citation Format

Share Document