scholarly journals Targeting YOD1 by RNA Interference Inhibits Proliferation and Migration of Human Oral Keratinocytes through Transforming Growth Factor-β3 Signaling Pathway

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-Long Zhou ◽  
Gang Chen ◽  
Meng-Xue Li ◽  
Heng-Xue Wang ◽  
Jia-Wei Hong ◽  
...  

Objective. We have identified a gene YOD1 encoding deubiquitinating enzyme (DUB) responsible for nonsyndromic cleft lip with or without cleft palate (NSCL/P). We aimed to determine the effects of YOD1 RNA interference (RNAi) on cell proliferation and migration, playing an important role in lip and palate formation, and to clarify whether the mechanisms involved TGF-β3 signaling associated with NSCL/P. Methods. RNAi was applied to construct vectors expressing YOD1 small interference RNAs (siRNAs). The vectors were transfected into the human oral keratinocytes (HOK) cells. The cell proliferation and migration were evaluated by the cell counting kit-8 (CCK-8) assay and wound healing assay, respectively. The mRNA levels were detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). The protein levels were investigated by western blotting. Results. The proliferation of YOD1 siRNA-transfected HOK cells was remarkably inhibited. The migration rate was significantly decreased in the YOD1 siRNA-transfected HOK cells. The TGF-β3 mRNA and protein levels were decreased significantly by siRNA-mediated knockdown of YOD1. YOD1 RNAi reduced the phosphor-Smad2/3 levels significantly. Conclusions. YOD1 RNAi may inhibit cell proliferation and migration associated with the pathogenesis of NSCL/P through TGF-β3 signaling. The study indicates a novel role of YOD1 in regulating TGF-β3 signaling to affect cell proliferation and migration resulting in NSCL/P.

2021 ◽  
Author(s):  
Jie Hua ◽  
Qingcai Meng ◽  
Chen Liang ◽  
Miaoyan Wei ◽  
Jiang Liu ◽  
...  

Abstract Background: The aim of this study was to explore the role of leucine-rich α2-glycoprotein 1 (LRG1) in the biological function and prognosis of pancreatic cancer.Methods: LRG1 was detected in serum and tissue specimens from patients with pancreatic cancer by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, and immunohistochemical (IHC) analysis. LRG1-overexpressing and LRG1-knockdown cell lines were established with lentiviral vectors containing LRG1-overexpression and shRNA plasmids, respectively. Colony formation, Cell Counting Kit-8 (CCK-8), wound healing, Transwell migration, and in vivo tumorigenicity assays were conducted to assess proliferation and migration of the pancreatic cancer cells. RNA sequencing was performed to identify potential downstream molecules of LRG1.Results: Serum LRG1 levels were significantly elevated in patients with pancreatic cancer compared with healthy controls. The mRNA and protein levels of LRG1 were higher in cancer tissues than in adjacent normal tissues. High LRG1 expression was significantly associated with shorter overall survival and found to be an independent risk factor for poor prognosis. Additionally, LRG1 dramatically promoted cell proliferation and migration in vitro and accelerated tumor growth in vivo. By RNA sequencing, we identified Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L) as a potential downstream molecule of LRG1. Further validation experiments confirmed a positive correlation between LRG1 and DTX3L.Conclusions: LRG1 is a valuable prognostic marker for pancreatic cancer that plays a crucial role in cell proliferation and migration. Targeting LRG1 or the downstream molecule DTX3L provides a novel strategy for the treatment of pancreatic cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Gao ◽  
Longfei Liu ◽  
Zhuolin Li ◽  
Yingxian Pang ◽  
Jiaqi Shi ◽  
...  

Pheochromocytoma, as a neuroendocrine tumor with the highest genetic correlation in all types of tumors, has attracted extensive attention. Von Hipper Lindau (VHL) has the highest mutation frequency among the genes associated with pheochromocytoma. However, the effect of VHL on the proteome of pheochromocytoma remains to be explored. In this study, the VHL knockdown (VHL-KD) PC12 cell model was established by RNA interference (shRNA). We compared the proteomics of VHL-KD and VHL-WT PC12 cell lines. The results showed that the expression of 434 proteins (VHL shRNA/WT > 1.3) changed significantly in VHL-KD-PC12 cells. Among the 434 kinds of proteins, 83 were involved in cell proliferation, cell cycle and cell migration, and so on. More importantly, among these proteins, we found seven novel key genes, including Connective Tissue Growth Factor (CTGF), Syndecan Binding Protein (SDCBP), Cysteine Rich Protein 61 (CYR61/CCN1), Collagen Type III Alpha 1 Chain (COL3A1), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type V Alpha 2 Chain (COL5A2), and Serpin Family E Member 1 (SERPINE1), were overexpressed and simultaneously regulated cell proliferation and migration in VHL-KD PC12 cells. Furthermore, the abnormal accumulation of HIF2α caused by VHL-KD significantly increased the expression of these seven genes during hypoxia. Moreover, cell-counting, scratch, and transwell assays demonstrated that VHL-KD could promote cell proliferation and migration, and changed cell morphology. These findings indicated that inhibition of VHL expression could promote the development of pheochromocytoma by activating the expression of cell proliferation and migration associated genes.


2021 ◽  
Vol 22 (4) ◽  
pp. 1826 ◽  
Author(s):  
Masashi Ishikawa ◽  
Masae Iwasaki ◽  
Hailin Zhao ◽  
Junichi Saito ◽  
Cong Hu ◽  
...  

Inhalational anaesthetics were previously reported to promote ovarian cancer malignancy, but underlying mechanisms remain unclear. The present study aims to investigate the role of sevoflurane- or desflurane-induced microRNA (miRNA) changes on ovarian cancer cell behaviour. The cultured SKOV3 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. Expression of miR-138, -210 and -335 was determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and Cell Counting Kit-8 (CCK8) assay with or without mimic miR-138/-210 transfections. The miRNA downstream effector, hypoxia inducible factor-1α (HIF-1α), was also analysed with immunofluorescent staining. Sevoflurane or desflurane exposure to cancer cells enhanced their proliferation and migration. miR-138 expression was suppressed by both sevoflurane and desflurane, while miR-210 expression was suppressed only by sevoflurane. miR-335 expression was not changed by either sevoflurane or desflurane exposure. The administration of mimic miR-138 or -210 reduced the promoting effects of sevoflurane and desflurane on cancer cell proliferation and migration, in line with the HIF-1α expression changes. These data indicated that inhalational agents sevoflurane and desflurane enhanced ovarian cancer cell malignancy via miRNA deactivation and HIF-1α. The translational value of this work needs further study.


Author(s):  
Xiao-San Zhu ◽  
Peng Gao ◽  
Yi-Chen Dai ◽  
Jun-Pei Xie ◽  
Wei Zeng ◽  
...  

AbstractEnoyl coenzyme A hydratase short chain 1 (ECHS1) is an important part of the mitochondrial fatty acid β-oxidation pathway. Altered ECHS1 expression has been implicated in cancer cell proliferation. This study assessed ECHS1 expression in human gastric cancer cell lines and investigated the effects of ECHS1 knockdown on gastric cancer cell proliferation and migration. The human gastric cancer cell lines SGC-7901, BGC-823 and MKN-28, and the immortalized human gastric epithelial mucosa GES-1 cell line were analyzed for ECHS1 protein levels using western blot. The effectiveness of ECHS1-RNA interference was also determined using western blot. Proliferation and migration of the siECHS1 cells were respectively measured with the CCK-8 and transwell assays. Phosphorylation of PKB and GSK3β was assessed using western blot. ECHS1 protein levels were significantly higher in poorly differentiated cells than in well-differentiated cells and immortalized gastric epithelial mucosa cells. Stable expression of ECHS1 shRNA was associated with an over 41% reduction in the ECHS1 protein levels of siECHS1 cells. Constitutive knockdown of the ECHS1 gene in siECHS1 cells was associated with significantly inhibited cell proliferation and migration. We also observed decreased levels of PKB and GSK3β phosphorylation in siECHS1 cells. ECHS1 expression is increased in human gastric cancer cells. Increased ECHS1 expression activates PKB and GSK3β by inducing the phosphorylation of the two kinases. ECHS1 may play important roles in gastric cancer cell proliferation and migration through PKB- and GSK3β-related signaling pathways.


2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Chuancheng Sun ◽  
Bing Xu ◽  
Liang Wang ◽  
Yilin Su

Background: Hirschsprung’s disease (HSCR) is a common defect in newborns, and studies have revealed that long non-coding RNA (lncRNA) is involved in the progression of HSCR. This research study aims to investigate the mechanism of downregulated RNA in cancer (DRAIC) on cell proliferation and migration in HSCR. Methods: Quantitative reverse transcription–polymerase chain reaction (qRT-PCR) was used to detect the expression of DRAIC in HSCR bowel stenosis tissues and normal colon tissues. Cell-counting kit-8 (CCK-8) and Transwell assays were employed to explore whether cellular functions change after overexpression or knockdown of the DRAIC in SH-SY5Y cells and human 293T cells. Protein expression levels were determined by Western blot analysis. RNA pull-down and dual-luciferase reporter assays were used to confirm the competitive relationship of DRAIC and integrin subunit alpha 6 (ITGA6) through their association with miR-34a-5p. Results: The lncRNA DRAIC was significantly increased in colon tissue from HSCR patients. The overexpression of DRAIC inhibited SH-SY5Y cell and human 293T cell proliferation and migration. Knockdown of DRAIC, however, promoted cell proliferation and migration. The RNA pull-down and dual-luciferase reporter assays have proven the competitive relationship between DRAIC and ITGA6 through their association with miR-34a-5p. Further rescue experiments have confirmed that DRAIC regulates cell proliferation and migration by affecting the miR-34a-5p/ITGA6 signal axis in HSCR. Conclusion: DRAIC promoted cell proliferation and migration by regulating the miR-34a-5p/ITGA6 signal axis in HSCR.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wumei Lin ◽  
Haiyan Ye ◽  
Keli You ◽  
Le Chen

Abstract Background Ovarian cancer (OC) is a common fatal malignant tumor of female reproductive system worldwide. Growing studies have proofed that circular RNAs (circRNAs) engage in the regulation of various types of cancers. However, the underlying biological functions and effect mechanism of circular RNA_LARP4 (circ_LARP4) in OC have not been explored. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to detect the expression of circ_LARP4 in OC cells. The function of circ_LARP4 was measured by cell counting kit-8 (CCK-8), colony formation assay and transwell assay. RNA immunoprecipitation (RIP) assay and luciferase reporter assays assessed the binding correlation between miR-513b-5p and circ_LARP4 (or LARP4). Results The expression of circ_LARP4 in OC cells was much lower than that in human normal ovarian epithelial cells. Overexpressing circ_LARP4 impaired cell proliferation, invasion and migration abilities. Circ_LARP4 worked as a competing endogenous RNA (ceRNA) to sponge miR-513b-5p. Furthermore, LARP4 was indirectly modulated by circ_LARP4 as the downstream target of miR-513b-5p, as well as the host gene of circ_LARP4. Conclusion Circ_LARP4 could hamper cell proliferation and migration by sponging miR-513b-5p to regulate the expression of LARP4. This research may provide some referential value to OC treatment.


2019 ◽  
Vol 47 (8) ◽  
pp. 3898-3904 ◽  
Author(s):  
Haiyan Zhang ◽  
Haixiang Guo

Objectives Prostate cancer (PCA) is the deadliest urological disease affecting men worldwide. Long noncoding RNA activated by DNA damage (NORAD) levels are increased in many cancer types, and induce cancer cell progression. However, little is known about the biological functions of NORAD in PCA. Methods In this work, the roles of NORAD in cell proliferation, migration, and apoptosis were examined by Cell Counting Kit-8, scratch wound, and annexin V-fluorescein isothiocyanate/propidium iodide staining assays, respectively, in PCA cell lines. Knockdown of NORAD was achieved by small interfering (si)RNA in PCA cell lines, and quantitative real-time PCR was used to detect the expression of NORAD. Results Cell proliferation and migration rates were significantly lower in the siNORAD group than in the wild-type group, while the apoptosis level was significantly higher in the siNORAD group compared with the wild-type group. Conclusions These results suggest that NORAD promotes the proliferation and migration of PCA cells and inhibits their apoptosis.


Sign in / Sign up

Export Citation Format

Share Document