scholarly journals Using Phytochemicals to Investigate the Activation of Nicotine Detoxification via Upregulation of CYP2A6 in Animal Models Exposed Tobacco Smoke Condensate by Intratracheal Instillation

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Dayeon Lee ◽  
Seung-Beom Seo ◽  
Hyun Jeong Lee ◽  
Tae-Sik Park ◽  
Soon-Mi Shim

This study examined the efficacy of standardized Smilax china L. root extract (SSCR) containing chlorogenic acid on detoxifying nicotine from tobacco smoke condensate (TSC) in vitro and in vivo. Chlorogenic acid is an identified bioactive component in SSCR by ultraperformance liquid chromatography/photodiode array/electrospray ionization/mass spectroscopy (UPLC/PDA/ESI/MS). HepG2 liver cells and A549 lung cells were carried for measuring ROS and antioxidant enzymes. Sprague-Dawley rats were treated with nicotine by intratracheal instillation (ITI). Cell viabilities by pretreatments of 5, 12.5, and 25, 50 μg SSCR/mL ranged from 41 to 76% in HepG2 and 65 to 95% in A549. Pretreatments of SSCR inhibited TSC-mediated production of reactive oxygen species (ROS) by 8 and 10% in HepG2 and A549 cells, respectively. However, the expression of CAT, SOD1, and AOX1 was downregulated by SSCR in the both cells. The highest conversion of cotinine was observed at 50 μg/mL of SSCR after 120 min of incubation. SSCR upregulated CYP2A6 3-fold in A549 cells regardless of TSC cotreatment. When Sprague-Dawley rats were treated with nicotine by ITI or subjected to SSCR administration for 14 days, the levels of cotinine in urine increased in SSCR treatment only. The cellular level of antioxidant capacity at 10 or 100 mg/kg body weight/day of SSCR treatment was 1.89 and 1.86 times higher than those of nicotine-control. Results suggest that the intake of SSCR can detoxify nicotine by elevating nicotine conversion to cotinine and antioxidant capacity.

1991 ◽  
Vol 7 (3) ◽  
pp. 125-139 ◽  
Author(s):  
David R. Bevan ◽  
David M. Ruggio

To evaluate health risks associated with exposure to particulates in the environment, it is necessary to quantify the bioavailability of carcinogens associated with the particulates. Direct analysis of bioavailability in vivo is most readily accomplished by adsorbing a radiolabeled form of the carcinogen to the particulate. A sam ple of native diesel particulate collected from an Oldsmobile die sel engine that contained 1.03 μ g benzo[ a] pyrene ( BaP)/ g particulate was supplemented with exogenous [ 3 H]- BaP to pro duce a particulate containing 2.62 μ g BaP/g. To insure that elu tion of BaP from native and [3 H] -BaP-supplemented particulate was similar, in vitro analyses were performed. When using phos pholipid vesicles composed of dimyristoylphosphatidylcholine (DMPC), 1.52% of total BaP was eluted from native particulate into the vesicles in 18 hrs; from [ 3 H] -BaP supplemented particu late, 1.68% was eluted. Using toluene as eluent, 2.55% was eluted from native particulate, and 8.25% from supplemented particulate, in 6 hrs. Supplemented particulate was then instilled intratracheally into male Sprague-Dawley rats and distribution of radioactivity was analyzed at selected times over 3 days. About 50% of radioactivity remained in lungs at 3 days following instil lation, with 30% being excreted into feces and the remainder dis tributed throughout the organs of the rats. To estimate the amount of radioactivity that entered feces through swallowing of a portion of the instilled dose, [3 H] -BaP-supplemented particu late was instilled intratracheally into rats that had a cannula sur gically implanted in the bile duct. Rate of elimination of radio activity into bile was monitored; 10.6% of radioactivity was re covered in 6 hr, an amount slightly lower than the 12.8% ex creted in 6 hrs into feces of animals with intact bile ducts. Our studies provide a quantitative description of the distribution of BaP and its metabolites following intratracheal instillation of diesel particulate. Because rates of elution of BaP in vitro are similar for native diesel particulate and particulate with supple mental [ 3H] -BaP, our results provide a reasonable estimate of the bioavailability in vivo of BaP associated with diesel particu late.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 330 ◽  
Author(s):  
Miguel Rebollo-Hernanz ◽  
Yolanda Aguilera ◽  
Teresa Herrera ◽  
L. Tábata Cayuelas ◽  
Montserrat Dueñas ◽  
...  

Melatonin is a multifunctional antioxidant neurohormone found in plant foods such as lentil sprouts. We aim to evaluate the effect of lentil sprout intake on the plasmatic levels of melatonin and metabolically related compounds (plasmatic serotonin and urinary 6-sulfatoxymelatonin), total phenolic compounds, and plasmatic antioxidant status, and compare it with synthetic melatonin. The germination of lentils increases the content of melatonin. However, the phenolic content diminished due to the loss of phenolic acids and flavan-3-ols. The flavonol content remained unaltered, being the main phenolic family in lentil sprouts, primarily composed of kaempferol glycosides. Sprague Dawley rats were used to investigate the pharmacokinetic profile of melatonin after oral administration of a lentil sprout extract and to evaluate plasma and urine melatonin and related biomarkers and antioxidant capacity. Melatonin showed maximum concentration (45.4 pg/mL) 90 min after lentil sprout administration. The plasmatic melatonin levels increased after lentil sprout intake (70%, p < 0.05) with respect to the control, 1.2-fold more than after synthetic melatonin ingestion. These increments correlated with urinary 6-sulfatoxymelatonin content (p < 0.05), a key biomarker of plasmatic melatonin. Nonetheless, the phenolic compound content did not exhibit any significant variation. Plasmatic antioxidant status increased in the antioxidant capacity upon both lentil sprout and synthetic melatonin administration. For the first time, we investigated the bioavailability of melatonin from lentil sprouts and its role in plasmatic antioxidant status. We concluded that their intake could increase melatonin plasmatic concentration and attenuate plasmatic oxidative stress.


2009 ◽  
Vol 296 (4) ◽  
pp. R1113-R1123 ◽  
Author(s):  
Gisella R. Borzone ◽  
Leonel F. Liberona ◽  
Andrea P. Bustamante ◽  
Claudia G. Saez ◽  
Pablo R. Olmos ◽  
...  

Syrian Golden hamsters develop more severe emphysema than Sprague-Dawley rats after intratracheal instillation of the same dose of elastase/body weight. Although species variations in antielastase defenses may largely explain these results, other variables, such as differences in lung antioxidants, cannot be overlooked since oxidative stress modulates antiprotease activity. We propose that elastase instillation might affect lung glutathione (GSH) metabolism differently in these species. Our aim was to study in hamsters and rats, lung glutathione metabolism at different times, from the stage of diffuse alveolar damage to advanced emphysema. We measured total and oxidized glutathione content as well as activity and expression of enzymes related to GSH synthesis and redox cycling: γ-glutamylcysteine synthetase, glutathione peroxidase, and glutathione reductase. Whereas rats showed no significant changes in these measurements, hamsters showed significant derangement in GSH metabolism early after elastase instillation: 25% fall in total GSH ( P < 0.05) with no increase in oxidized glutathione associated with reduced enzyme activities 24 h after elastase [60% for γ-glutamylcysteine synthetase ( P < 0.01), 30% for glutathione peroxidase ( P < 0.01), and 75% for glutathione reductase ( P < 0.001)]. GSH homeostasis was restored at the end of the first week, involving transient increased expression of these enzymes. We conclude that elastase induces significant alterations in GSH metabolism of hamster lungs and no overall change in rat lungs. Although differences in disease severity may account for our findings, the hamster becomes vulnerable to functional inhibition of α1-antitrypsin by oxidants and thus, even more susceptible to injury than it would be, considering only its low α1-antitrypsin level.


Author(s):  
Suhas H. Patil ◽  
Satkar Rajbhoj ◽  
Seema V. Bhalerao ◽  
Puja Jha ◽  
Manasi V. Limaye ◽  
...  

Background: To compare the anti-obesity action of Argyreia speciosa root extract with standard anti-obesity drug orlistat. Healthy Sprague-Dawley rats (100-200g, n=50) were obtained from the animal house. Dose of Orlistat was 32.4mg/kg/day and Dose of Argyreia speciosa root was 500mg/kg/day.Methods: Food induced obesity model was used. Following parameters were evaluated: Total Cholesterol (mg/dl), Triglyceride (mg/dl), HDL-cholesterol (mg/dl), LDL cholesterol (mg/dl), atherogenic index, serum lipase (U/L). Analysis was done by one way ANOVA followed by post-hoc test and Graph Pad Prism version 5.00 was used for the analysis.Results: Total cholesterol, triglcerides, LDL cholesterol and Atherogenic index was significantly lesser in the rats fed with CD+O group and CD+ASE group than in the animals from CD group (p<0.05). It was also significantly lesser in the rats fed with CD+O+ASE than in the animals from CD group (p<0.05). HDL cholesterol was significantly greater in the rats fed with CD+O group and CD+ASE group than in the animals from CD group (p<0.05). It was also significantly greater in the rats fed with CD+O+ASE than in the animals from CD group (p<0.05).Conclusions: ASE significantly reduces total cholesterol (mg/dl), triglyceride (mg/dl), LDL cholesterol (mg/dl) and atherogenic index, it significantly increases HDL- cholesterol (mg/dl) and it is comparable to orlistat. Thus the anti-obesity action of ASE is comparable to orlistat.


Sign in / Sign up

Export Citation Format

Share Document