scholarly journals A General Review on Longwall Mining-Induced Fractures in Near-Face Regions

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Qingsheng Bai ◽  
Shihao Tu

It is believed that underground longwall mining usually produces fractures in the surrounding rocks. On the one hand, mining-induced fractures not only degrade the strength of the rock mass but also serve as main channels for fluids (e.g., water and methane). Fractures facilitate the failure of the rock mass and fluid inrush into working spaces. Therefore, mining-induced fractures are significant for the safety evaluation of underground structures and finding feasible solutions. On the other hand, the fractures are also beneficial for methane collection and coal fragmentation, which are essential for the successful operation of longwall top coal caving mining. Therefore, determining the characteristics of induced fractures is significant for underground longwall mining. From a global perspective, longwall mining-induced fractures in the overburden have been well studied, which improves the understanding of the mining pressure and ground control. However, induced fractures near the longwall face, which have more significant effects on mining activities, have not been summarized. The goal of this review paper is to provide a general summary of the current achievements in characterizing mining-induced fractures in near-face regions. The characteristics of mining-induced fractures in the coal wall, chain pillar, immediate roofs and top coal, and floors are reviewed and summarized. Remarks are made on the current progress of, fundamental problems with, and developments in methodologies for characterizing mining-induced fractures using methods such as field observations, small-scale laboratory tests, physical modeling, and numerical modeling. Based on a comprehensive analysis, the advantages and disadvantages of each method are discussed, and the ideal conditions for applying each of these methods are also recommended.

Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satar Mahdevari ◽  
Mohammad Hayati

AbstractDesigning a suitable support system is of great importance in longwall mining to ensure the safe and stable working conditions over the entire life of the mine. In high-speed mechanized longwall mining, the most vulnerable zones to failure are roof strata in the vicinity of the tailgate roadway and T-junctions. Severe roof displacements are occurred in the tailgate roadway due to the high-stress concentrations around the exposed roof span. In this respect, Response Surface Methodology (RSM) was utilized to optimize tailgate support systems in the Tabas longwall coal mine, northeast of Iran. The nine geomechanical parameters were obtained through the field and laboratory studies including density, uniaxial compressive strength, angle of internal friction, cohesion, shear strength, tensile strength, Young’s modulus, slake durability index, and rock mass rating. A design of experiment was developed through considering a Central Composite Design (CCD) on the independent variables. The 149 experiments are resulted based on the output of CCD, and were introduced to a software package of finite difference numerical method to calculate the maximum roof displacements (dmax) in each experiment as the response of design. Therefore, the geomechanical variables are merged and consolidated into a modified quadratic equation for prediction of the dmax. The proposed model was executed in four approaches of linear, two-factor interaction, quadratic, and cubic. The best squared correlation coefficient was obtained as 0.96. The prediction capability of the model was examined by testing on some unseen real data that were monitored at the mine. The proposed model appears to give a high goodness of fit with the accuracy of 0.90. These results indicate the accuracy and reliability of the developed model, which may be considered as a reliable tool for optimizing or redesigning the support systems in longwall tailgates. Analysis of variance (ANOVA) was performed to identify the key variables affecting the dmax, and to recognize their pairwise interaction effects. The key parameters influencing the dmax are respectively found to be slake durability index, Young’s modulus, uniaxial compressive strength, and rock mass rating.


Author(s):  
R. Villavicencio ◽  
Bin Liu ◽  
Kun Liu

The paper summarises observations of the fracture response of small-scale double hull specimens subjected to quasi-static impact loads by means of simulations of the respective experiments. The collision scenarios are used to evaluate the discretisation of the finite element models, and the energy-responses given by various failure criteria commonly selected for collision assessments. Nine double hull specimens are considered in the analysis so that to discuss the advantages and disadvantages of the different failure criterion selected for the comparison. Since a large scatter is observed from the numerical results, a discussion on the reliability of finite element analysis is also provided based on the present study and other research works found in the literature.


2018 ◽  
Vol 43 (2) ◽  
pp. 95-106
Author(s):  
András Schlett ◽  
Judit Beke

Large-scale farming that utilizes industrial methods to intensify production is becoming more significant worldwide. This study explores this phenomenon and sheds light on its consequences. Contingency factors serve as key drivers when determining the advantages and disadvantages of both large-scale and small-scale farming. Significant shifts in agro-production methods have fundamentally altered ownership and production structures in agriculture and had a disastrous impact on the livelihoods of people living in rural areas.


2021 ◽  
Vol 1 ◽  
pp. 17-24
Author(s):  
Abdessattar LAMAMRA ◽  
◽  
Dmitriy Leonidovich NEGURITSA ◽  
Samir BEDR ◽  
Ariant A. REKA ◽  
...  

Reserch relaevance. Most ground movements are generally due to rock instability, this natural phenomenon poses a risk to humanity. The properties of the rock mass directly influence the type of movement especially in underground structures. Research aim. Our goal is to characterize and classify the rock mass of diatomite from the sig mine using geomechanical classification systems such as the RQD and RMR in order to determine the quality of the rocks in the sig mine Western Algeria from the determination of the physical and mechanical properties. Methodology. In this article, the characterization analysis of the diatomite rock mass of the sig mine was carried out. First, determinations of the physical properties and carried out the triaxial test to determine the mechanical properties (young’s modulus, the friction angle, the dilatancy angle, the cohesion, the poisson’s ratio). Secondly to classify the deposit and give a recommendation to avoid stability problems. Research results. The results from physical and mechanical analyzes, it can be said that the nature of the rock present in the diatomite (underground mine) does not have enough resistance. Conclusion. Our study definitively proves that the rock mass of sig diatomite is of very low quality and it will be very dangerous for the underground mining work of the mine especially in places where the mineralized layer is very deep. And we suggest to replace the mining technique room and pillar currently used in the diatomite mine and put another mining method which includes roof support system to ensure the safety both of the miners and the equipment.


Author(s):  
M.A. Sonnov ◽  
A.V. Trofimov ◽  
A.E. Rumyantsev ◽  
S.V. Shpilev

The study is exemplified by complex workings of a main ore pass that include a variety of underground structures, usually with unique dimensions which depend on the function and size of the equipment placed. The technical solutions for the underground crushing plant and associated structures envisage construction of chambers with the height of up to 35 m and the width of up to 20 m at the depths exceeding 800-1000 m. Such conditions call for a closer attention to be paid to the mine support parameters, especially the bolting depth. A block geomechanical model was designed in the Micromine Mining Software for the rock mass of the new main ore pass. Geotechnical boreholes logs and results of physical and mechanical rock tests were used as the input data for the model. Four domains were identified in the block geomechanical model for subsequent numerical modelling. A 3D model of the stress-and-strain state of the rock mass was made using the CAE Fidesys software based on the Micromine wire-frame model of the main ore pass. The history of the rock mass incremental loading was reconstructed for correct simulation of its stress-and-strain state. Prior to the excavation, the rock mass is pre-stressed by the weight of the rock strata. The excavation phase was then simulated in the stepwise manner. An array of points with the values of maximum principal stresses was downloaded from the numerical model post-processing program and interpolated into the block geomechanical model to refine the SRF parameter of the Barton's Q rating. Based on the obtained Q values, the mine support parameters for chambers were determined using the Barton, Hutchinson and Potvin empirical methods.


Author(s):  
A.A. Baimakhanov ◽  
◽  
Ye.N. Begaliyev ◽  

The article highlights the problematic moments associated with the fall of young children, adults, domestic and wild animals, as well as the entry of vehicles into communication collectors. Similar technical developments, their advantages and disadvantages are considered, a legal assessment of the technical purpose and the admissibility of introducing new structures into the structure of existing material objects is given. The key point of the article is the author's proposal for the implementation of the obtained utility model into the practice of servicing the system of urban underground structures.


Author(s):  
Constanza Gutiérrez-Gómez

Abstract The livestock sector faces an important challenge in the medium and long term since it must satisfy an increasing demand for animal products as a result of the increase in population and the world economy but safeguarding natural resources and at the same time minimizing the environmental contamination, especially the greenhouse gas (GHG) emissions attributed to livestock husbandry. For Latin America and the Caribbean (LAC), this becomes more relevant given the importance of the sector for the food security of rural communities, particularly for small-scale producers. In this manuscript, we address the main challenges of LAC in this context, from a global perspective that includes the demographic, economic, cultural, and environmental effects. The biggest global challenge for the LAC livestock sector for the coming decades is how to satisfy the growing human demand for animal protein in a sustainable way maintaining the food security of their communities. The efforts to achieve these goals require focusing on improving the efficiency of both animal husbandry and production systems. Therefore, it is necessary to implement technologies of sustainable intensification and it is urgent that those who make political decisions become aware of these issues.


Sign in / Sign up

Export Citation Format

Share Document