scholarly journals Benzoic Acid Used as Food and Feed Additives Can Regulate Gut Functions

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Xiangbing Mao ◽  
Qing Yang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Jun He

As a kind of antibacterial and antifungal preservative, benzoic acid is widely used in foods and feeds. Recently, many studies showed that it could improve the growth and health, which should, at least partially, be derived from the promotion of gut functions, including digestion, absorption, and barrier. Based on the similarity of gut physiology between human and pigs, many relative studies in which piglets and porcine intestinal epithelial cells were used as the models have been done. And the results showed that using appropriate benzoic acid levels might improve gut functions via regulating enzyme activity, redox status, immunity, and microbiota, but excess administration would lead to the damage of gut health through redox status. However, the further mechanisms that some intestinal physiological functions might be regulated are not well understood. The present review will, in detail, summarize the effect of benzoic acid on gut functions.

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Orsolya Palócz ◽  
Géza Szita ◽  
György Csikó

The intestinal epithelium is the first determining barrier to the drugs administered per os. Cytochrome P450 (CYP) enzymes are substantial in the initial step of xenobiotic metabolism; therefore, intestinal CYP enzyme activities could be an important influencing factor of the oral utilization of xenobiotic substances. In this study, the effect of four drinking water supplements on CYP mRNA levels of porcine intestinal epithelial cells was examined. Further goal of the study is to describe the effect of these feed additives on the proinflammatory response of the LPS-treated enterocytes. The nontransformed porcine intestinal epithelial cells (IPEC-J2) were grown on six-well polyester membrane inserts. Cell cultures were treated with LPS (10 μg/ml), β-glucan (5 and 50 μg/ml), sanguinarine-containing additive (5 and 50 μg/ml), drinking water acidifier (0.1 and 1 μl/ml), and fulvic acid (25 and 250 μg/ml) for 1 hour. Cells were washed with culture medium and incubated for additional 1 h before total RNA isolation. IL-6, IL-8, TNF-α, HSP70, CYP1A1, CYP1A2, and CYP3A29 mRNA levels were measured. The LPS treatment upregulated the gene expression of IL-8 and TNF-α. The relative gene expression of IL-6 remained unchanged and TNF-α and HSP70 were downregulated after the treatment with each feed additive. CYP1A1 and CYP1A2 expressions increased after sanguinarine-containing solution, fulvic acid, and drinking water acidifier treatment. None of the treatments changed the gene expression of CYP3A29, responsible for the metabolism of the majority of drug substances used in swine industry. The feed additive substances inhibited the expression of proinflammatory mediators HSP70 and TNF-α; however, β-glucan and fulvic acid elevated the production of the chemokine IL-8 mRNA in endotoxin-treated enterocytes. All acidic supplements increased the expression of CYP1A1 gene; their constituents may serve as a ligand of CYP1A1 nuclear receptors.


1999 ◽  
Vol 277 (3) ◽  
pp. G541-G547 ◽  
Author(s):  
Karen E. Sheppard ◽  
Kevin X. Z. Li ◽  
Dominic J. Autelitano

To evaluate the potential roles that both receptors and enzymes play in corticosteroid regulation of intestinal function, we have determined glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11β-hydroxysteroid dehydrogenase (11β-HSD) expression in intestinal epithelial cells. GR and MR mRNA and receptor binding were ubiquitously expressed in epithelial cells, with receptor levels higher in ileum and colon than jejunum and duodenum. RNase protection analysis showed that 11β-HSD1 was not expressed in intestinal epithelial cells, and enzyme activity studies detected no 11-reductase activity. 11β-HSD2 mRNA and protein were demonstrated in ileal and colonic epithelia; both MR and GR binding increased when enzyme activity was inhibited with carbenoxolone. Duodenal and jejunal epithelial cells showed very little 11β-HSD2 mRNA and undetectable 11β-HSD2 protein; despite minor (<7%) dehydrogenase activity in these cells, enzyme activity did not alter binding of corticosterone to either MR or GR. These findings demonstrate the ubiquitous but differential expression of MR and GR in intestinal epithelia and that 11β-HSD2 modulates corticosteroid binding to both MR and GR in ileum and proximal and distal colon but not in duodenum or jejunum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongfei Bai ◽  
Yanmei Huang ◽  
Ying Li ◽  
Bingbing Zhang ◽  
Cuihong Xiao ◽  
...  

Lactobacillus casei (L. casei), a normal resident of the gastrointestinal tract of mammals, has been extensively studied over the past few decades for its probiotic properties in clinical and animal models. Some studies have shown that some bacterium of Lactobacillus stimulate the production of antimicrobial peptides in intestinal cells to clear enteric pathogens, however, which antimicrobial peptides are produced by L. casei stimulation and its function are still not completely understood. In this study, we investigated the changes of antimicrobial peptides’ expression after intragastric administration of L. casei to mice. The bioinformatics analysis revealed there were nine genes strongly associated with up-regulated DEGs. But, of these, only the antimicrobial peptide mReg3a gene was continuously up-regulated, which was also confirmed by qRT-PCR. We found out the mReg3a expressed in engineering E.coli promoted cell proliferation and wound healing proved by CCK-8 assay and wound healing assay. Moreover, the tight junction proteins ZO-1 and E-cadherin in mReg3a treatment group were significantly higher than that in the control group under the final concentration of 0.2 mg/ml both in Porcine intestinal epithelial cells (IPEC-J2) and Mouse intestinal epithelial cells (IEC-6) (p &lt; 0.05). Surprisingly, the recombinant mReg3a not only inhibited Enterotoxigenic Escherichia coli (ETEC), but also reduced the copy number of the piglet diarrheal viruses, porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus (PoRV), indicating the antimicrobial peptides mReg3a may be feed additives to resist the potential of the intestinal bacterial and viral diarrhea disease.


2000 ◽  
Vol 118 (4) ◽  
pp. A592
Author(s):  
Gerard Dijkstra ◽  
Manon Homan ◽  
Harry van Goor ◽  
Mariska Geuken ◽  
Alie D. Jager ◽  
...  

2022 ◽  
Vol 15 (716) ◽  
Author(s):  
Annalisa M. VanHook

Commensal-derived retinoic acid protects mice against infection by priming the innate defenses of intestinal epithelial cells.


2020 ◽  
Author(s):  
Raymond Kiu ◽  
Agatha Treveil ◽  
Lukas C. Harnisch ◽  
Shabhonam Caim ◽  
Charlotte Leclaire ◽  
...  

SummaryBifidobacterium is an important gut microbiota member during early life that is associated with improved gut health. However, the underlying health-driving mechanisms are not well understood, particularly how Bifidobacterium may modulate the intestinal barrier via programming of intestinal epithelial cells (IECs). In this study, we sought to investigate the global impact of model strain Bifidobacterium breve UCC2003 on the neonatal IEC transcriptome, including gene regulation and pathway modulation. Small IECs from two-week-old neonatal mice administered B. breve UCC2003 for three consecutive days or PBS (control group) were subjected to global RNASeq, with various bioinformatic approaches used to determine differentially expressed genes, pathways and affected cell types between control and experimental groups. Whilst colonisation with B. breve had minimal impacts on the neonatal microbiota, we observed extensive regulation of the IEC transcriptome; ~4,000 genes significantly up-regulated, including key genes associated with epithelial barrier function. Enrichment of cell differentiation and cell proliferation pathways were observed, along with an overrepresentation of stem cell marker genes, indicating an increase in the regenerative potential of the epithelial layer. Expression of distinct immune-associated pathway members (e.g. Toll-like Receptors) were also affected after neonatal B. breve colonisation. In conclusion, B. breve UCC2003 plays a central role in driving universal transcriptomic changes in neonatal IECs that enhances cell replication, differentiation and growth, predominantly in the stem cell compartment. This study enhances our overall understanding of the benefits of B. breve in driving intestinal epithelium homeostatic development during early life, with potential avenues to develop novel live biotherapeutic products.


Sign in / Sign up

Export Citation Format

Share Document