scholarly journals Effect of Rhus verniciflua Extract on IgE-Antigen-Mediated Allergic Reaction in Rat Basophilic Leukemic RBL-2H3 Mast Cells and Passive Cutaneous Anaphylaxis in Mice

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hyun Ju Do ◽  
Yeo Jin Hwang ◽  
Hye Jin Yang ◽  
Kwang Il Park

Rhus verniciflua is widely known for its antioxidant, antibacterial, anticancer, and antiaging efficacy and α-glucosidase inhibition. This study was designed whether Rhus verniciflua extracts inhibit the IgE-antigen-mediated allergic reaction in RBL-2H3 mast cells, and it further investigated the FcεRI- and arachidonate-signaling by which Rhus verniciflua extracts exert its antiallergic effects. IgE-antigen-sensitized RBL-2H3 mast cells were investigated for the cytotoxicity of Rhus verniciflua extracts and β-hexosaminidase release, and inflammatory mediators (e.g., TNF-α, IL-4, IL-6, histamine, and PGD2) were then assessed. Additionally, we examined expressions of genes involved in arachidonate- and FcεRI-signaling pathway in RBL-2H3. Rhus verniciflua extracts inhibited β-hexosaminidase release and production of the inflammatory mediators in RBL-2H3. Rhus verniciflua extracts reduced amounts of histamine and expressions of FcεRI signaling-related genes such as Lyn and Syk and phosphorylation of extracellular signal-regulated kinase in mast cells. Finally, in late allergic responses, Rhus verniciflua extracts reduced PGD2 release and COX-2 and cPLA2 phosphorylation expressions from IgE-antigen-mediated mast cells. Lastly, 250–500 mg/kg RVE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergy properties of Rhus verniciflua extracts in FcɛRI-mediated allergic reaction.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hyun Ju Do ◽  
Tae Woo Oh ◽  
Ju Hye Yang ◽  
Kwang Il Park ◽  
Jin Yeul Ma

Davallia mariesiiMoore (Drynaria rhizome extract (DRE)) is widely known for its efficacy in treating inflammation, arteriosclerosis, and bone injuries. This study evaluated whether treatment with DRE inhibited FcɛRI-mediated allergic responses in the RBL-2H3 mast cells and investigated the early- and late-phase mechanisms by which DRE exerts its antiallergic effects. IgE anti-DNP/DNP-HSA-sensitized RBL-2H3 mast cells were tested for cytotoxicity to DRE, followed by the assessment ofβ-hexosaminidase release. We measured the amounts of inflammatory mediators (e.g., histamine, PGD2, TNF-α, IL-4, and IL-6) and examined the expression of genes involved in arachidonate and FcεRI signaling pathways. In addition, we confirmed the antiallergic effects of DRE on passive cutaneous anaphylaxis (PCA) in mice. DRE inhibited RBL-2H3 mast cell degranulation and production of allergic mediators in them. In early allergic responses, DRE reduced expression of FcεRI signaling-related genes (e.g., Syk, Lyn, and Fyn) and extracellular signal-regulated kinase phosphorylation in mast cells. In late allergic responses, DRE reduced PGD2release and COX-2 expression and cPLA2phosphorylation in FcɛRI-mediated mast cells. Lastly, 250–500 mg/kg DRE significantly attenuated the IgE-induced PCA reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergic effects of DRE in FcɛRI-mediated allergic responses.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroyuki Kitamura ◽  
Hiroko Urano ◽  
Toshiaki Ara

Periodontal disease is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss in severe clinical cases. The chemical mediator prostaglandin E2 (PGE2) and cytokines such as interleukin- (IL-)6 and IL-8 have been known to play important roles in inflammatory responses and tissue degradation. In the present study, we investigated the effects of a kampo medicine, kakkonto (TJ-1), on the production of prostaglandin E2 (PGE2), IL-6, and IL-8 by human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Kakkonto concentration dependently suppressed LPS-induced PGE2 production but did not alter basal PGE2 levels. In contrast, kakkonto significantly increased LPS-induced IL-6 and IL-8 production. Kakkonto decreased cyclooxygenase- (COX-)1 activity to approximately 70% at 1 mg/mL but did not affect COX-2 activity. Kakkonto did not affect cytoplasmic phospholipase A2 (cPLA2), annexin1, or LPS-induced COX-2 expression. Kakkonto suppressed LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation, which is known to lead to ERK activation and cPLA2 phosphorylation. These results suggest that kakkonto decreased PGE2 production by inhibition of ERK phosphorylation which leads to inhibition of cPLA2 phosphorylation and its activation. Therefore, kakkonto may be useful to improve gingival inflammation in periodontal disease.


2021 ◽  
Vol 11 (11) ◽  
pp. 2137-2145
Author(s):  
Xuejuan Zhu ◽  
Danqian Lu

Background: Sulfiredoxin (Srx) has been identified to play important roles in the development of various cancers. However, the precise effects and underlying mechanism of Srx on the progression of HCC are far from being fully understood. Materials and Methods: The abundances of Srx in THLE-2 cell and HCC cell lines were determined by western blot and RT-qPCR. Next, SK-Hep-1 cells were transfected with shRNA-Srx or shRNA-NC and treated with TBHQ (an extracellular signal-regulated kinase (ERK) activator) for functional experiments. Then, CCK8 and colony formation assays were used to determine cell proliferation and clone-forming abilities in vitro. Cell migration and invasion were assessed via wound healing and transwell assays. The expression of MMP2, MMP9 and key members in ERK/nuclear factor E2 related factor (Nrf2) signaling pathway was detected by performing western blot analysis. Results: We reported evidence that Srx was frequently up-regulated in HCC cell lines. Srx interference constrained cell proliferation, colony formation rate, migration and invasion of SK-Hep-1 cells. Moreover, mechanistic investigations indicated that Srx interference significantly inhibited the activation of ERK/Nrf2 signaling pathway, and ERK activator TBHQ can reverse the functions of Srx interference in SK-Hep-1 cells. Conclusion: Overall, Downregulation of Srx might impede HCC progression by suppressing ERK/Nrf2 signaling pathway. Findings in the current study reported the functional involvement and molecular mechanism of Srx in HCC, suggesting that Srx might have a potential therapeutic value in HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document