scholarly journals Corrosion Resistance of DLC Film-Coated SUS316L Steel Prepared by Ion Beam Enhanced Deposition

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Bei B. Han ◽  
Dong Y. Ju ◽  
Mao R. Chai ◽  
Hui J. Zhao ◽  
Susumu Sato

In order to improve the conductivity and anticorrosive resistance of bipolar plates in fuel cells, the characterizations and corrosion behaviors of the DLC-coated SUS316L steel deposited with different gas ratios CH4/H2 and deposition times were investigated and evaluated. The chemical bonding structure and composition of the DLC coatings were confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The micromorphology and surface roughness of the DLC were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The element compositions of cross section were determined by electron probe microanalysis (EPMA). The interfacial contact resistance (ICR) was measured. Furthermore, the DLC-coated SUS316L steel was corroded by potentiostatic polarizations in a 0.5 M H2SO4 solution at 0.8 V, 90°C for 168 h, and the corrosion behaviors were investigated in the solution using electrochemical techniques. In addition, the metal ions in sulfuric acid corrosion solution were detected by inductively coupled plasma-atomic emission spectroscopy. The results indicate that the DLC coatings deposited at a lower gas ratio CH4/H2 of 1 : 1 could result in a decreasing ID/IG ratio of 1.03, low Ra roughness of 3.77 nm, low ICR of 12.9 mΩ cm2, and low metal ion concentration of 16.60 ppm in the corrosion solution. The significant improvement in the anticorrosion resistance of the DLC film was mainly due to the increased sp3 element and formation of the passive film. As a result, the DLC coating deposited on the SUS316L steel at CH4/H2 = 1 : 1 has better anticorrosion properties. However, the DLC film-coated SUS316L steel still cannot meet the corrosive resistance of the bipolar plate.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Beibei Han ◽  
Mengyuan Yan ◽  
Dongying Ju ◽  
Maorong Chai ◽  
Susumu Sato

The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and deposition times, was prepared by the ion beam deposition (IBD) method, which has the advantage of high adhesion because of the graded interface mixes at the atomic level. The chemical characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM, AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at 0.8 V, 90 °C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4 corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a corrosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of 1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3 element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC bipolar plates.


2001 ◽  
Vol 697 ◽  
Author(s):  
Kie Moon Song ◽  
Namwoong Paik ◽  
Steven Kim ◽  
Daeil Kim ◽  
Seongjin Kim ◽  
...  

AbstractNitrogen-doped diamond-like carbon (DLC) films were deposited on a silicon substrate by direct metal ion beam deposition (DMIBD). Partial pressures of nitrogen gas were changed to get different compositions of nitrogen in the DLC films. The composition and surface morphology of the films were examined using X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). Effect of nitrogen doping on field emission property was studied. The field emission data indicated that the nitrogen doping lowered the turn-on field and increase the current density. It was believed that doping of nitrogen into the DLC film plays an important role in enhancement of the field emission. This enhancement of field emission could be explained by the improvement of electron transport through nitrogen-dope DLC layer.


NANO ◽  
2018 ◽  
Vol 13 (08) ◽  
pp. 1850090 ◽  
Author(s):  
Ruyuan Jiang ◽  
Niantao Liu ◽  
Yuhong Su ◽  
Sanshuang Gao ◽  
Xamxikamar Mamat ◽  
...  

An integrative electroanalytical method was developed for detecting Cd[Formula: see text] and Pb[Formula: see text] ions in aqueous solutions. Polysulfide/graphene (RGO-S) nanocomposites were prepared and their performance as electrochemical sensors for Cd[Formula: see text] and Pb[Formula: see text] was evaluated. The RGO-S nanocomposite was carefully characterized by scanning electron microscopy with energy-dispersive X-ray spectrometry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The as-prepared RGO-S was incorporated into a pyrolytic graphite electrode (RGO-S/PGE) and used for detecting trace amount of Cd[Formula: see text] and Pb[Formula: see text] by differential pulse anodic stripping voltammetry. Under optimal conditions, the stripping peak current of RGO-S/PGE varies linearly with heavy metal ion concentration in the ranges 2.0–300[Formula: see text][Formula: see text]g L[Formula: see text] for Cd[Formula: see text] and 1.0–300[Formula: see text][Formula: see text]g L[Formula: see text] for Pb[Formula: see text]. The limits of detection for Cd[Formula: see text] and Pb[Formula: see text] were estimated to be about 0.67[Formula: see text][Formula: see text]g L[Formula: see text] and 0.17[Formula: see text][Formula: see text]g L[Formula: see text], respectively. The prepared electrochemical heavy-metal-detecting electrode provides good repeatability and reproducibility with high sensitivity, making it a suitable candidate for monitoring Cd[Formula: see text] and Pb[Formula: see text] concentrations in aqueous environmental samples.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Workneh M. Shume ◽  
H. C. Ananda Murthy ◽  
Enyew Amare Zereffa

Even though the photocatalytic processes are a good technology for treatment of toxic organic pollutants, the majority of current photocatalysts cannot utilize sunlight sufficiently to realize the decomposition of these organic pollutants. As stated by various researchers, metal oxide nanoparticles have a significant photocatalytic performance under visible light source. Among various chemical and physical methods used to synthesize nanostructured silver oxide, green synthetic route is a cheaper and environmental friendly method. To confirm the optimum production of Ag2O NPs, effect of pH, extract concentration, metal ion concentration, and contact time were optimized. The structure, morphology, crystallinity, size, purity, elemental composition, and optical properties of obtained Ag2O NPs were characterized by different techniques, such as scanning electron microscopy (SEM), transmission electron microscope (HRTEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectrophotometer accordingly as revealed by our literature review. The photocatalytic performance of the synthesized nanocrystalline Ag2O by photocatalytic degradation of organic dyes under visible light irradiation has been discussed thoroughly in this review. Many past studies revealed that organic dyes and pollutants are decomposed completely by green synthesized Ag2O NPs under irradiation of visible light.


2018 ◽  
Vol 19 (8) ◽  
pp. 2340 ◽  
Author(s):  
Karuppasamy Ananth ◽  
Jinxing Sun ◽  
Jiaming Bai

In this paper, the synthesis of porous manganese substituted hydroxyapatite (Mn-HAp) coating on zinc oxide (ZnO) coated stainless steel (316L SS) using the electrodeposition technique is reported. The structural, functional, morphological, and elemental analyses are characterized by various analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Results of electrochemical techniques such as cyclic polarization and impedance show that the Mn-HAp coating on ZnO coated 316L SS has the highest corrosion resistance in simulated body fluid (SBF) solution. Moreover, dissolution of metal ions was extremely reduced, as evaluated by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The adhesion and hardness of Mn-HAp/ZnO bilayer coatings have superior mechanical properties over individual coatings. Further, the biocompatibility of in vitro osteoblast attachment, cell viability, and live/dead assessment also confirmed the suitability of Mn-HAp/ZnO bilayer coating on 316L SS for orthopedic applications.


Author(s):  
Paul Tesch ◽  
Noel Smith ◽  
Noel Martin ◽  
Doug Kinion

Abstract Conventional focused ion beams (FIB) employing liquid metal ion sources (LMIS) are used to create site specific cross-sections for viewing subsurface features and performing 3D metrology on subsurface structure. Emerging applications incorporate novel materials as well as large structures that interface to decreasing IC dimensions and often require destructive physical analysis. This paper describes a novel instrument in which an inductively coupled plasma ion source is integrated onto a conventional FIB column. It compares this instrument to the existing LMIS FIBs and shows examples that illustrate the capabilities of this tool. This instrument retains the benefits of the conventional LMIS FIB such as high placement accuracy and the ability to immediately obtain high resolution images of the cross-section face without having to transfer it to another tool. It is capable of creating large cross-sections from 10 microns to 1mm in size at about 100 times faster than a conventional FIB.


2015 ◽  
Vol 73 (5) ◽  
pp. 1025-1032 ◽  
Author(s):  
Shiwei Zhou ◽  
Changbo Zhang ◽  
Rui Xu ◽  
Chuantao Gu ◽  
Zhengguo Song ◽  
...  

Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl−, and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl− increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl−-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl−. Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment.


2020 ◽  
Vol 1 (1) ◽  
pp. 125-132
Author(s):  
Florin Dumitru Bora ◽  
Aurel Ciubucă ◽  
Gabriel Tăbăranu ◽  
Viorica Enache ◽  
Oana Cioroi ◽  
...  

The determination of metals in different type of wines is of high importance for the nutritional, as well as toxic effects of these elements. The main purpose of this research is to determine the concentration of Cu, Fe, Mn, Cd, Zn and Pb in wine. The analyzed samples were wine samples obtained under micro-vinification conditions and from grapevine cultivars for the white wines (Feteasca Alba, Feteasca Regala, Babeasca Gri, Sarba) and for the red wines (Merlot, Feteasca Neagră, Cabernet Sauvignon). The highest concentrations were obtained in the cultivars of grapevine for the red wines (49.86 ± 1.32 μg/L Pb) recorded by the Feteasca Neagra cultivar and (0.23 ± 0.01 μg/L Cd) for the Merlot cultivar. In the case of Cu, Zn, Fe and Mn, the highest concentrations were recorded by the vines for white wines (532.48 ± 13.79 μg/L Cu, 1845.23 ± 32.58 μg/L Zn, 1654.98 ± 26.68 μg/L Fe, 221.32 ± 17.49 μg/L Mn) in comparison to the cultivars of vines for red wines. The conclusions obtained from the analysis of heavy metals in wines through ICP-MS are as follows: grapevine cultivars for red wine recorded the highest concentrations of Cd and Pb and the grapevine cultivars for white wines recorded the highest concentrations of Cu, Zn, Fe and Mn.Wine samples do not have a metal ion concentration higher than the maximum concentration allowed by law.The storage temperature does not affect the concentration of heavy metals, dry wine has a higher concentration of heavy metals in its composition.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3655
Author(s):  
Shu-Min Hsu ◽  
Fan Ren ◽  
Christopher D. Batich ◽  
Arthur E. Clark ◽  
Dan Neal ◽  
...  

The effect of pH changes on the chemical durability of dental glass–ceramic materials was evaluated using weight loss and ion release levels. The hypothesis that increased pH changes will exhibit greater corrosion was investigated. The ion concentration was analyzed using inductively coupled plasma atomic emission spectrometer (ICP). The surface compositions were investigated using X-ray photoelectron spectroscopy (XPS). The surface morphologies were examined using scanning electron microscopy (SEM). Dental glass–ceramics were tested in constant immersion, 3-day cycling, and 1-day cycling with pH 10, pH 2, and pH 7 for 3, 15, and 30 days. The 1-d cycling group demonstrated the highest levels of weight loss compared with 3-d cycling and constant immersion. For the ion release, Si4+ and Ca2+ had the highest rates of release in 1-d cycling, whereas the Al3+ release rate with constant pH 2 was highest. The alteration/passivation layer that was formed on the surface of disks possibly prevented further dissolution of pH 10 corroded disks. XPS analysis demonstrated different surface compositions of corroded disks in pH 10 and pH 2. Si4+, K+, Na+, Al3+, and Ca2+ were detected on the surface of corroded pH 10 disks, whereas a Si4+ and P5+-rich surface formed on corroded pH 2 disks. SEM results demonstrated rougher surfaces for corroded disks in cycling conditions and pH 2 constant immersion. In conclusion, increased pH changes significantly promote the corrosion of dental glass–ceramic materials.


2016 ◽  
Vol 7 (4) ◽  
pp. 429-441 ◽  
Author(s):  
K. Ramyakrishna ◽  
M. Sudhamani

Excess iron in water resources can lead to health hazards and problems. The ability of lactic acid bacteria to bind iron has not yet been widely studied. In the present study, sorption of iron ions from aqueous solutions onto lactic acid bacterium was determined. Elemental analyses were carried out by inductively coupled plasma optical emission spectrometry. The kinetics of Fe(III) biosorption was investigated at different initial concentrations of metal ion. The highest uptake capacity was found to be 16 mg of Fe(III) per gram of adsorbent with a contact time of 24 hr and at initial metal ion concentration of 34 mg/L. The uptake capacity of Fe(III) ion varied from 83.2 to 46.7% across the range of initial metal ion concentrations. The equilibrium data were evaluated by Langmuir and Freundlich isotherms, and were found to fit better with the latter (R2 = 0.9999). The surface morphology of the biomass and percentage of metal was characterized by using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The functional groups on the cell wall surface of biomass involved in biosorption of heavy metals were studied by Fourier transform infrared spectroscopy spectrum.


Sign in / Sign up

Export Citation Format

Share Document