scholarly journals Carvedilol Inhibits Angiotensin II-Induced Proliferation and Contraction in Hepatic Stellate Cells through the RhoA/Rho-Kinase Pathway

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ying Wu ◽  
Zhen Li ◽  
Sining Wang ◽  
Aiyuan Xiu ◽  
Chunqing Zhang

Aim. Carvedilol is a nonselective beta-blocker used to reduce portal hypertension. This study investigated the effects and potential mechanisms of carvedilol in angiotensin II- (Ang II-) induced hepatic stellate cell (HSC) proliferation and contraction. Methods. The effect of carvedilol on HSC proliferation was measured by Cell Counting Kit-8 (CCK-8). Cell cycle progression and apoptosis in HSCs were determined by flow cytometry. A collagen gel assay was used to confirm HSC contraction. The extent of liver fibrosis in mice was evaluated by hematoxylin-eosin (H&E) and Sirius Red staining. Western blot analyses were performed to detect the expression of collagen I, collagen III, α-smooth muscle actin (α-SMA), Ang II type I receptor (AT1R), RhoA, Rho-kinase 2 (ROCK2), and others. Results. The results showed that carvedilol inhibited HSC proliferation and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Carvedilol also modulated Bcl-2 family proteins and increased apoptosis in Ang II-treated HSCs. Furthermore, carvedilol inhibited HSC contraction induced by Ang II, an effect that was associated with AT1R-mediated RhoA/ROCK2 pathway interference. In addition, carvedilol reduced α-SMA expression and collagen deposition and attenuated liver fibrosis in carbon tetrachloride (CCl4)-treated mice. The in vivo data further confirmed that carvedilol inhibited the expression of angiotensin-converting enzyme (ACE), AT1R, RhoA, and ROCK2. Conclusions. The results indicated that carvedilol dose-dependently inhibited Ang II-induced HSC proliferation by impeding cell cycle progression, thus alleviating hepatic fibrosis. Furthermore, carvedilol could inhibit Ang II-induced HSC contraction by interfering with the AT1R-mediated RhoA/ROCK2 pathway.

2021 ◽  
Author(s):  
Qiying Yao ◽  
Li Zhang ◽  
Yuchuan Wang ◽  
Junli Liu ◽  
Liu Yang ◽  
...  

Acute leukemia is a hematological malignant tumor. Long non-coding RNA urothelial cancer-associated 1 (UCA1) is involved in the chemo-resistance of diverse cancers, but it is unclear whether UCA1 is associated with the sensitivity of acute leukemia cells to daunorubicin (DNR). DNR (100 nM) was selected for functional analysis. The viability, cell cycle progression, apoptosis, and invasion of treated acute leukemia cells (HL-60 and U-937) were evaluated by cell counting kit-8 (CCK-8) assay, flow cytometry assay, or transwell assay. Protein levels were detected with western blot analysis. Expression patterns of UCA1 and miR-613 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between UCA1 and microRNA-613 (miR-613) was verified by dual-luciferase reporter assay. We observed that UCA1 expression was elevated in HL-60 and U-937cells. DNR constrained viability, cell cycle progression, invasion, and facilitated apoptosis of HL-60 and U-937 cells in a dose-dependent manner, but these impacts mediated by DNR were reverted after UCA1 overexpression. MiR-613 was downregulated in HL-60 and U-937 cells, and UCA1 was verified as a miR-613 sponge. MiR-613 inhibitor reversed DNR treatment-mediated effects on viability, cell cycle progression, apoptosis, and invasion of HL-60 and U-937 cells, but these impacts mediated by miR-613 inhibitor were counteracted after UCA1 inhibition. The inactivation of the PI3K/AKT pathway caused by DNR treatment was reversed after miR-613 inhibitor introduction, but this influence mediated by miR-613 inhibitor was offset after UCA1 knockdown. In conclusion, UCA1 upregulation facilitated the resistance of acute leukemia cells to DNR via the PI3K/AKT pathway by sponging miR-613.


2006 ◽  
Vol 173 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Daniela Dorner ◽  
Sylvia Vlcek ◽  
Nicole Foeger ◽  
Andreas Gajewski ◽  
Christian Makolm ◽  
...  

Lamina-associated polypeptide (LAP) 2α is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2α in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2α by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2α-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2α COOH terminus directly bound Rb, and overexpressed LAP2α inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2α associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2α in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2α on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.


2005 ◽  
Vol 288 (6) ◽  
pp. F1118-F1124 ◽  
Author(s):  
Aihua Zhang ◽  
Guixia Ding ◽  
Songming Huang ◽  
Yuanjun Wu ◽  
Xiaoqing Pan ◽  
...  

Angiotensin II (ANG II) has been shown to activate c-Jun NH2-terminal kinase (JNK) in cultured mesangial cells, but the functional implication of this phenomenon remains to be determined, largely due to the lack of an effective approach to block JNK. Therefore, the present study was carried out to examine whether JNK is involved in ANG II-induced cell proliferation in cultured human mesangial cells (HMCs) with the use of a newly developed JNK-selective blocker, SP-600125. Within minutes, treatment with 100 nM ANG II activated all three members of MAP kinase family, including extracellular signal-regulated protein kinase (Erk) 1/2, JNK, and p38 in cultured HMCs, as assessed by immunoblotting detection of phosphorylation of MAP kinases. ANG II-dependent activation of JNK was further confirmed by detection of increased phosphorylation and transcription activity of c-Jun after the ANG II treatment. SP-600125 ranging from 5 to 10 μM almost completely abolished the activation of JNK by ANG II without affecting the activities of Erk1/2 and p38. After treatment with 100 ng ANG II, there was a steady increase in [3H]thymidine incorporation that was blocked by SP-60025 in a dose- and time-dependent manner. Similarly, SP-600125 dose dependently reduced the ANG II-induced increase in cell number. The antiproliferative effect of SP-60025 was further determined by cell-cycle analysis with flow cytometry. Twenty-four hours after ANG II treatment, 50% of the quiescent HMCs (G0/G1) progressed into the S phase, and the cell cycle progression was almost completely prevented in the presence of SP-60025. Our data suggest that JNK mediates the proliferative effect of ANG II in cultured HMCs and thus represents a novel therapeutic target for treatment of chronic renal diseases.


1998 ◽  
Vol 72 (12) ◽  
pp. 9637-9644 ◽  
Author(s):  
Alan K. Howe ◽  
Stéphanie Gaillard ◽  
John S. Bennett ◽  
Kathleen Rundell

ABSTRACT The simian virus 40 small t antigen (small-t) is required for optimal viral replication and transformation, especially during the infection of nondividing cells, suggesting that the function of small-t is to promote cell cycle progression. The mechanism through which small-t promotes cell growth reflects, in part, its binding and inhibition of protein phosphatase 2A (PP2A). The use of recombinant adenoviruses allows small-t expression in a majority of cells in a population, thus providing a convenient source of cells for biochemical analyses. In monkey kidney CV1 cells, small-t expressed from these adenovirus vectors activated the mitogen-activated protein kinase (MAPK) pathway, induced JNK activity, and increased AP-1 DNA-binding activity, all in a PP2A-dependent manner. Expression of small-t also caused an increase in the phosphorylation of the Na+/H+ antiporter, a mitogen-activated ion exchanger whose activity correlates with its phosphorylation. At least part of the antiporter phosphorylation induced by small-t reflected activation of the MAPK pathway, as suggested by results of assays using a chemical inhibitor of the MAPK-activating kinase, MEK. Finally, small-t expression from adenovirus vectors promoted efficient cell cycle progression by growth-arrested cells. These vectors should facilitate further analysis of effects of small-t on cell cycle mediators.


2019 ◽  
Author(s):  
Kamila Burdova ◽  
Hongbin Yang ◽  
Roberta Faedda ◽  
Samuel Hume ◽  
Daniel Ebner ◽  
...  

SummaryCyclins are central engines of cell cycle progression when partnered with Cyclin Dependent Kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but forms an E3 ubiquitin ligase, assembling through the F-box domain, an Skp1-Cul1-F-box (SCF) module. Although multiple substrates of cyclin F have been identified the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging cells with more than 200 kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss. Chk1 inhibition in cells lacking cyclin F leads to DNA replication catastrophe. The DNA replication catastrophe depends on the accumulation of E2F1 in cyclin F depleted cells. We observe that SCFcyclin F promotes E2F1 degradation after Chk1 inhibitors in a CDK dependent manner. Thus, Cyclin F restricts E2F1 activity during cell cycle and upon checkpoint inhibition to prevent DNA replication stress. Our findings pave the way for patient selection in the clinical use of checkpoint inhibitors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260204
Author(s):  
Murshed H. Sarkar ◽  
Ryoji Yagi ◽  
Yukihiro Endo ◽  
Ryo Koyama-Nasu ◽  
Yangsong Wang ◽  
...  

While IFNγ is a well-known cytokine that actively promotes the type I immune response, it is also known to suppress the type II response by inhibiting the differentiation and proliferation of Th2 cells. However, the mechanism by which IFNγ suppresses Th2 cell proliferation is still not fully understood. We found that IFNγ decreases the expression of growth factor independent-1 transcriptional repressor (GFI1) in Th2 cells, resulting in the inhibition of Th2 cell proliferation. The deletion of the Gfi1 gene in Th2 cells results in the failure of their proliferation, accompanied by an impaired cell cycle progression. In contrast, the enforced expression of GFI1 restores the defective Th2 cell proliferation, even in the presence of IFNγ. These results demonstrate that GFI1 is a key molecule in the IFNγ-mediated inhibition of Th2 cell proliferation.


Author(s):  
Hu Chen ◽  
Lequn Bao ◽  
Jianhua Hu ◽  
Dongde Wu ◽  
Xianli Tong

BackgroundIn recent years, microRNA-1-3p (miR-1-3p) has been linked to the progression of multiple cancers, whereas little is known about its role in hepatocellular carcinoma (HCC). Herein, we investigated the function of miR-1-3p in HCC, and its regulatory function on origin recognition complex subunit 6 (ORC6).MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expression levels of miR-1-3p and ORC6 mRNA in HCC samples and cell lines. ORC6 expression at the protein level was quantified by Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8) assays, Transwell assays, flow cytometry, and 5-Ethynyl-2′-deoxyuridine (EdU) assay were performed for examining cell proliferation, migration, invasion, cell cycle, and apoptosis. The targeting relationship between miR-1-3p and ORC6 was confirmed with bioinformatic analysis and dual-luciferase reporter assays.ResultsThe expression of miR-1-3p was reduced in HCC samples and cell lines. Overexpression of miR-1-3p suppressed the proliferation, migration, and invasion, and induced cell-cycle arrest and apoptosis of HCC cells, whereas the opposite effects were induced by miR-1-3p inhibition. ORC6 is identified as a novel target of miR-1-3p, the expression of which is negatively correlated with miR-1-3p expression in HCC tissues. ORC6 overexpression facilitated the proliferation, migration, invasion, and cell cycle progression, and reduced apoptosis of HCC cells, whereas the opposite effects were induced by ORC6 knockdown. What is more, ORC6 overexpression counteracted the biological functions of miR-1-3p in HCC cells.ConclusionMiR-1-3p targets ORC6 to suppress the proliferation, migration, invasion, and cell cycle progression, and promote apoptosis of HCC cells.


2021 ◽  
Author(s):  
Jared A Tangeman ◽  
Agustín Luz-Madrigal ◽  
Sutharzan Sreeskandarajan ◽  
Erika Grajales- Esquivel ◽  
Lin Liu ◽  
...  

AbstractThe plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in an FGF2-dependent manner. To characterize the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from 1) intact RPE, 2) transiently reprogrammed RPE (t-rRPE) 6 hours post-retinectomy, and 3) reprogrammed RPE (rRPE) 6 hours post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for MAPK-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis were used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) regulators, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.


2022 ◽  
Author(s):  
Miji Jeon ◽  
Danielle L Schmitt ◽  
Minjoung Kyoung ◽  
Songon An

Glucose metabolism has been studied extensively to understand functional interplays between metabolism and a cell cycle. However, our understanding of cell cycle-dependent metabolic adaptation particularly in human cells remains largely elusive. Meanwhile, human enzymes in glucose metabolism are shown to functionally organize into three different sizes of a multienzyme metabolic assembly, the glucosome, to regulate glucose flux in a size-dependent manner. Here, using fluorescence single-cell imaging techniques, we discover that glucosomes spatiotemporally oscillate during a cell cycle in an assembly size-dependent manner. Importantly, their oscillation at single-cell levels is in accordance with functional contributions of glucose metabolism to cell cycle progression at a population level. Collectively, we demonstrate functional oscillation of glucosomes during cell cycle progression and thus their biological significance to human cell biology.


Sign in / Sign up

Export Citation Format

Share Document