scholarly journals The Differential Expression of miRNAs and a Preliminary Study on the Mechanism of miR-194-3p in Keloids

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhishan Xu ◽  
Bingyu Guo ◽  
Peng Chang ◽  
Qiang Hui ◽  
Wei Li ◽  
...  

The aim of this study was to detect abnormally expressed microRNA (miRNA) in keloids and to study their functions. The differential expression of miRNAs in keloids and normal tissue was detected by gene microarray. MiRNA expression was verified by real-time PCR. A luciferase reporter gene assay, western blot, and real-time PCR were used to detect the effect of miR-194-3p on RUNX2. An MTT assay and a transwell assay were used to detect the effect of miR-194-3p in both primary cultured fibroblasts and HKF cells. Related proteins were analysed by western blot and real-time PCR. The expression of miR-194-3p was lower in keloids, and MiR-194-3p was shown to target RUNX2 directly. MiR-194-3p inhibited the proliferation and migration of fibroblasts through the inhibition of CDK4 and MMP2. MiR-194-3p and RUNX2 may become new targets for the prevention and treatment of keloids.

2017 ◽  
Vol 243 (4) ◽  
pp. 386-393 ◽  
Author(s):  
Wei Hao ◽  
Hongzhi Liu ◽  
Lugang Zhou ◽  
Yujie Sun ◽  
Hao Su ◽  
...  

In this study, we aimed to investigate the expression of miR-145 before and after hASCs osteogenic differentiation. We also intended to explore the influence of the target relationship between miR-145 and FoxO1 on osteogenic differentiation. Dual-luciferase reporter gene assay and real-time PCR were used to confirm the target relationship between miR-145 and FoxO1. Furthermore, the modulatory effects of miR-145 and FoxO1 on hASCs osteoinductive differentiation were measured by real-time PCR , Western blot, ALP staining, ARS staining, and cell immunofluorescence assay. After osteogenic differentiation, miR-145 was gradually down-regulated, while FoxO1 was up-regulated in hASCs. MiR-145 could directly target FoxO1 3′UTR. FoxO1 was negatively regulated by miR-145. After osteoinductive differentiation, BSP, Ocn, and OPN expression was lowered with the overexpression of miR-145 or the knockdown of FoxO1. Furthermore, ALP and ARS staining assay results showed weakened ALP activity and extracellular matrix calcification. When overexpressing miR-145 and FoxO1 simultaneously, no obvious change in ALP activity and extracellular matrix calcification was seen. MiR-145 could suppress hASCs osteoinductive differentiation by suppressing FoxO1 directly. Impact statement Researching on ASCs was a promising strategy to study osteogenic differentiation. The regulatory role of miR-145 on hASCs osteogenic differentiation remained partially explored. Our study revealed a novel mechanism of the osteogenic differentiation process and suggested that miR-145 and its target gene FoxO1 may be potential targets for the therapy of human osteogenic-related disorders.


2020 ◽  
Author(s):  
Qi-Ming Ma ◽  
Xiao-Jing Li ◽  
Shao-Bao Pei ◽  
Bo-Wen Li ◽  
Guo-Song Han ◽  
...  

Abstract Background: The imbalance of proliferation and apoptosis plays an important role in the pathogenesis of osteoporosis. MicroRNAs play an important role in the apoptosis of osteoblasts cells. However, the role and potential mechanism of miR-545-3p in regulating osteoblast apoptosis remain unclear. The purpose of this study was to investigate the effect of miR-545-3p on osteoblast cells apoptosis and explore the mechanism of osteoporosis.Methods: Osteogenic medium was used to induce the differentiation of osteoblasts MC3T3-E1 to construct the osteoporosis model, and the expression of ALP, Runx2, OCN were detected by western blot; miR-545-3p mRNA was detected by RT-PCR. Transfected with miR-545-3p mimics into MC3T3-E1, then flow cytometry was used to detected the changes of apoptosis status. The expression of apoptosis related proteins Bcl-2 and Bax were detected by western blot. Bioinformatics was used to analyze the binding protein of miR-545-3p, and luciferase reporter gene experiment was used to verify whether miR-545-3p directly targets SIRT6; RT-qPCR and western blot were used to detect the expression level of SIRT6 after transfection of miR-545-3p mimics or miR-545-3p inhibitor. After co-transfection of miR-545-3p mimics and pcDNA3.1-SIRT6, the apoptosis status of osteoblasts was analyzed by flow cytometry, and the expression of apoptosis related proteins Bcl-2 and Bax were detected by western blot.Results: The expression of miR-545-3p in patients with osteoporosis was significantly higher than that of normal in GEO database (P<0.05). After osteoblasts were cultured in osteogenic medium, the expression of ALP, Runx2 and OCN was increased, and the expression of miR-545-3p was decreased. Flow cytometry analysis showed that overexpression of miR-545-3p promoted the apoptosis of osteoblasts. Western blot results showed that overexpression of miR-545-3p promoted the expression of Bax and decreased the expression of Bcl-2. Bioinformatics analysis showed that miR-545-3p could target SIRT6. The results of real-time PCR and western blot showed that SIRT6 expression was significantly inhibited by miR-545-3p mimics (P<0.05). Luciferase reporter gene assay showed that miR-545-3p significantly inhibited luciferase activity of wild-type SIRT6-3'UTR plasmid transfected cells (P<0.05), but had no effect on luciferase activity of mutant SIRT6-3'UTR plasmid transfected cells (P<0.05). However, co-transfection of miR-545-3p mimics and pcDNA3.1-SIRT6 could reduce the apoptosis, and western blot results showed that co-transfection promoted the expression of Bcl-2 and decreased the expression of Bax.Conclusions: miR-545-3p can promote the apoptosis of osteoblasts by inhibiting the expression of SIRT6, which provides a certain idea for the treatment of osteoporosis.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110093
Author(s):  
Mingxin Liu ◽  
Hong Wu ◽  
Yiqiang Liu ◽  
Yan Tan ◽  
Songtao Wang ◽  
...  

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


2021 ◽  
Author(s):  
Xiang Zhang ◽  
Yan Liu ◽  
Jing Zhao ◽  
Tingguo Yan

Background: This study discussed the clinical value and expression level of miR-455-5p in atherosclerosis (AS) patients. Meanwhile, its regulatory effect on the proliferation and migration of vascular smooth muscle cells (VSMCs) was further analyzed. Materials & methods: Clinical experiments were detected by quantitative real-time PCR and receiver operating characteristic. Cell experiments were detected by CCK-8, transwell and luciferase reporter gene assay. Results: miR-455-5p was low expressed in AS patients and had diagnostic value to distinguish AS patients from healthy controls. MiR-455-5p inhibited the proliferation and migration of VSMCs. SOCS3 was the target gene of miR-455-5p. Conclusion: MiR-455-5p may be used as a potential diagnostic biomarker for AS. MiR-455-5p may inhibit the proliferation and migration of VSMCs through targeting SOCS3.


2017 ◽  
Vol 95 (5) ◽  
pp. 578-584 ◽  
Author(s):  
Lei Yan ◽  
Kerui Cai ◽  
Jun Liang ◽  
Haifeng Liu ◽  
Yang Liu ◽  
...  

We investigated the how miR-572 regulates PPP2R2C, and studied the effects of miR-572 and PPP2R2C on proliferation and migration as well as invasion of nasopharyngeal carcinoma (NPC) cells. NPC tissues and normal tissues were collected, and the expressions of miR-572 and PPP2R2C were detected by real-time PCR. Western blot was applied to detect the expression of PPP2R2C protein. The target relationship between miR-572 and PPP2R2C was confirmed by dual luciferase reporter gene assay. MTT assay and flow cytometry were applied to investigate the viability and apoptosis levels of NPC cells. Transwell as well as wound healing assays were used, respectively, to detect the invasiveness and migration of NPC cells. MiR-572 was highly expressed in NPC tissues as well as NPC cells, and there was lower expression of PPP2R2C in NPC tissues compared with normal samples. MiR-572 could bind to the 3′ UTR of PPP2R2C and decrease its expression. Over-expressed miR-572 and decreased PPP2R2C expression could both inhibit proliferation and invasion and induce apoptosis of NPC cells. Thus, miR-572 promotes the proliferation and invasion of NPC by directly down-regulating PPP2R2C.


2021 ◽  
Author(s):  
Zhang Jieling ◽  
Li Kai ◽  
Zheng Huifen ◽  
Zhu Yiping

Abstract Background: MicroRNAs play an important role in the genesis and progression of tumors, including colorectal cancer (CRC), which has a high morbidity and mortality rate. In this research, the role of miR-495-3p and HMGB1 in CRC was investigated.Methods: We performed qRT-PCR to detect the expression of miR-495-3p in colorectal cancer tissues and cell lines. Functional experiments such as CCK-8 assay, EDU assay, Transwell assay and apoptosis assay were conducted to explore the effects of miR-495-3p on the proliferation, migration and apoptosis of CRC cells in vitro. Then, the use of database prediction, dual-luciferase reporter gene assay and functional experiments verified the role of miR-495-3p target gene HMGB1 in CRC. Finally, rescue experiments was performed to investigate whether overexpression of HMGB1 could reverse the inhibitory effect of miR-495-3p on CRC cell proliferation in vivo and in vitro.Results: miR-495-3p was down-regulated in colorectal cancer tissues and cell lines, and could inhibit the proliferation and migration of colorectal cancer cells, and promote cell apoptosis. The database prediction and dual-luciferase reporter gene assay showed that HMGB1 was the downstream target gene of miR-495-3p. We finally demonstrated that miR-495-3p inhibited CRC cell proliferation by targeting HMGB1 in vitro and in vivo.Conclusion: Our research shows that miR-495-3p inhibits the progression of colorectal cancer by down-regulating the expression of HMGB1, which indicates that miR-495-3p may become a potential therapeutic target for colorectal cancer.


2021 ◽  
Vol 20 (11) ◽  
pp. 2267-2272
Author(s):  
Xiaoying Ma ◽  
Zijiang Sang ◽  
Qinghua Zhang ◽  
Wenbiao Ma

Purpose: To explore the potential biological functions of oxymatrine on breast cancer (BCa) cells and the underlying molecular mechanism.Methods: Relative levels of microRNA-188 (miRNA-188) and PTEN (gene of phosphate and tension homology deleted on chromosome ten) in BCa cells, MDA-MB-231 and TB549, were determined. The influence of oxymatrine treatment, miRNA-188 and PTEN on proliferative and migratory abilities in BCa cells were assessed by 3-(4,5-imethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), cell counting kit-8 (CCK-8) and Transwell assay, respectively. The binding relationship between miRNA-188 and PTEN was evaluated by dual-luciferase reporter gene assay.Results: Oxymatrine downregulated miRNA-188 and upregulated PTEN in BCa cells. Proliferative and migratory activities in BCa were inhibited by treatment of oxymatrine (p < 0.05). Dual-luciferase reporter gene assay results indicated that PTEN was the target gene of miRNA-188. Furthermore, rescue experiments demonstrated that the regulatory loop, oxymatrine/miRNA-188/PTEN, was involved in the regulation of the migration and proliferation of BCa.Conclusion: Oxymatrine treatment inhibits BCa progression by downregulating miRNA-188, leading to the upregulation of PTEN. The results of the current study may provide new insight into the diagnosis and treatment of BCa.


2020 ◽  
Author(s):  
Juan Tong ◽  
Huilan Liu ◽  
Changcheng Zheng ◽  
Xiaoyu Zhu ◽  
Xiang Wan ◽  
...  

Abstract Background: Accumulating circular RNAs (circRNAs) are reported to be abnormally expressed in diverse cancers, hematologic malignancies included. This study aimed to investigate the biological function and underlying mechanisms of circ_0000005 in acute myeloid leukemia (AML).Materials and methods: Bone marrow samples were enrolled from AML patients with normal samples as controls. Circ_0000005, miR-139-5p and tetraspanin 3 (Tspan3) were detected by qRT-PCR and Western blot, respectively. AML cell lines (KG1 and HL60) were used as cell models. CCK-8, Transwell and flow cytometry assays were adopted to study the biological functions of circ_0000005 on AML cells in vitro. The interrelation between circ_0000005 and miR-139-5p was detected by bioinformatics, qRT-PCR, luciferase reporter gene assay, RNA pull-down assay, and RNA-binding protein immunoprecipitation (RIP) assays. Ultimately, Western blot, qRT-PCR, luciferase reporter gene assay were adopted to corroborate the interrelation between miR-139-5p and its target Tspan3. Results: Circ_0000005 was demonstrably elevated in both AML clinical samples and cell lines. Circ_0000005 overexpression promoted the viability, migration and invasion of AML cells, and repressed the apoptosis of AML cells, while silencing circ_0000005 showed opposite biological effects. Circ_0000005 interacted with miR-139-5p and repressed its expression, and Tspan3 was proved to be negatively regulated by miR-139-5p. Circ_0000005 could promote the expression of Tspan3 via repressing miR-139-5p, and the oncogenic functions of circ_0000005 were dependent on its regulatory function on miR-139-5p/Tspan3 axis.Conclusion: Circ_0000005 facilitates the malignant phenotypes of AML cells via miR-139-5p/Tspan3 axis. Circ_0000005 may serve as a potential therapeutic target in AML.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Kai Liu ◽  
Wen Huang ◽  
Dan-Qing Yan ◽  
Qing Luo ◽  
Xiang Min

The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p, and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p. The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p, but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaowen Shao ◽  
Jinlong Qin ◽  
Chendong Wan ◽  
Jiajing Cheng ◽  
Lian Wang ◽  
...  

BackgroundSecondary infertility remains a major complication of endometrial fibrosis in women. The use of exosomes from adipose-derived mesenchymal stem cells (ADSCs) has shown promising results for the treatment of endometrial fibrosis. However, the mechanisms of action of ADSC-exosome (ADSC-Exo) therapy remain unclear.Materials and MethodsAn endometrial fibrosis model was established in mice treated with alcohol and endometrial epithelial cells (ESCs) treated with TGF-β1. ADSCs were isolated from Sprague Dawley (SD) rats, and exosomes were isolated from ADSCs using ExoQuick reagent. Exosomes were identified by transmission electron microscopy (TEM), NanoSight, and Western blot analysis. The expression level of lncRNA-MIAT was detected by qPCR analysis. Western blot analysis was carried out to determine the protein levels of fibrosis markers (TGFβR1, α-SMA, and CK19). A dual-luciferase reporter gene assay was used to verify the relationship between target genes. The endometrial tissues of the endometrial fibrosis model were stained with HE and Masson’s trichrome.ResultsADSCs and ADSC-Exos were successfully isolated, and the expression level of lncRNA-MIAT was significantly down-regulated in endometrial tissue and the TGF-β1-induced ESC injury model, whereas ADSC-Exos increased the expression of lncRNA-MIAT in the TGF-β1-induced ESC model. Functionally, ADSC-Exo treatment repressed endometrial fibrosis in vivo and in vitro by decreasing the expression of hepatic fibrosis markers (α-SMA and TGFβR1) and increasing the expression of CK19. Moreover, miR-150-5p expression was repressed by lncRNA-MIAT in the TGF-β1-induced ESC injury model. The miR-150-5p mimic promoted TGF-β1-induced ESC fibrosis.ConclusionADSC-Exos mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p, which suggests that lncRNA-MIAT from ADSC-Exos may be a viable treatment for endometrial fibrosis.


Sign in / Sign up

Export Citation Format

Share Document