scholarly journals Immunogenic Evaluation of Ribosomal P-Protein Antigen P0, P1, and P2 and Pentameric Protein Complex P0-(P1-P2)2 of Plasmodium falciparum in a Mouse Model

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Agnieszka Szuster-Ciesielska ◽  
Leszek Wawiórka ◽  
Dawid Krokowski ◽  
Nikodem Grankowski ◽  
Łukasz Jarosz ◽  
...  

Malaria remains one the most infectious and destructive protozoan diseases worldwide. Plasmodium falciparum, a protozoan parasite with a complex life cycle and high genetic variability responsible for the difficulties in vaccine development, is implicated in most malaria-related deaths. In the course of study, we prepared a set of antigens based on P-proteins from P. falciparum and determined their immunogenicity in an in vivo assay on a mouse model. The pentameric complex P0-(P1-P2)2 was prepared along with individual P1, P2, and P0 antigens. We determined the level of cellular- and humoral-type immunological response followed by development of specific immunological memory. We have shown that the number of Tc cells increased significantly after the first immunization with P2 and after the second immunization with P1 and P0-(P1-P2)2, which highly correlated with the number of Th1 cells. P0 appeared as a poor inducer of cellular response. After the third boost with P1, P2, or P0-(P1-P2)2, the initially high cellular response dropped to the control level accompanied by elevation of the number of activated Treg cells and a high level of suppressive TGF-β. Subsequently, the humoral response against the examined antigens was activated. Although the titers of specific IgG were increasing during the course of immunization for all antigens used, P2 and P0-(P1-P2)2 were found to be significantly stronger than P1 and P0. A positive correlation between the Th2 cell abundance and the level of IL-10 was observed exclusively after immunization with P0-(P1-P2)2. An in vitro exposure of spleen lymphocytes from the immunized mice especially to the P1, P2, and P0-(P1-P2)2 protein caused 2-3-fold higher cell proliferation than that in the case of lymphocytes from the nonimmunized animals, suggesting development of immune memory. Our results demonstrate for the first time that the native-like P-protein pentameric complex represents much stronger immune potential than individual P-antigens.

2019 ◽  
Vol 295 (2) ◽  
pp. 403-414 ◽  
Author(s):  
Susheel K. Singh ◽  
Jordan Plieskatt ◽  
Bishwanath Kumar Chourasia ◽  
Vandana Singh ◽  
Judith M. Bolscher ◽  
...  

The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis–derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro. We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.


2020 ◽  
Author(s):  
Yi Zhang ◽  
Tao Yuan ◽  
Zuxi Li ◽  
Chunyang Luo ◽  
Yuxuan Wu ◽  
...  

Abstract Background: Chemotherapy and immunotherapy are the mainly non-surgical treatment for osteosarcoma in clinic presently. However, serious side effects, short blood circulation time, and immunosuppressive tumor microenvironment have extremely limited their application. To generate an onsite combined chemotherapy and immunotherapy regimen, we designed a self-stabilized hyaluronic acid (HA) nanoparticle for the tumor-targeting delivery of doxorubicin (DOX), cisplatin (DDP), and resiquimod (R848) in osteosarcoma treatment, referred to as DDPNPDOX&R848. Methods: Here, we tested the physicochemical properties of and the ability of DDPNPDOX&R848 to induce immunogenic cell death (ICD) and revert immunosuppressive cells were characterized in vitro. The therapeutic efficacy of DDPNPDOX&R848 in vivo was evaluated in an orthotopic osteosarcoma mouse model. Furthermore, we also verified the immune memory evoking effect of DDPNPDOX&R848 in an osteosarcoma rechanllenge mouse model.Results: DDPNPDOX&R848 possesses a uniform size (similar to 190 nm) and ideal pH responsibility, and its ability to induce ICD and modulate immune cells was also proven. In vivo, regardless of the mouse model used (i.e., orthotopic osteosarcoma or rechanllenge xenografted osteosarcoma), DDPNPDOX&R848 showed significantly enhanced tumor inhibition and prolonged survival. Evoked tumoricidal immune memory responses were also demonstrated in the rechanllenged osteosarcoma mouse model.Conclusion: In summary, this intelligent codelivery platform might be a competitive candidate for osteosarcoma immunochemotherapy.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4095 ◽  
Author(s):  
Luiz C. S. Pinheiro ◽  
Lívia M. Feitosa ◽  
Marilia O. Gandi ◽  
Flávia F. Silveira ◽  
Nubia Boechat

Based on medicinal chemistry tools, new compounds for malaria treatment were designed. The scaffolds of the drugs used to treat malaria, such as chloroquine, primaquine, amodiaquine, mefloquine and sulfadoxine, were used as inspiration. We demonstrated the importance of quinoline and non-quinoline derivatives in vitro with activity against the W2 chloroquine-resistant (CQR) Plasmodium falciparum clone strain and in vivo against Plasmodium berghei-infected mouse model. Among the quinoline derivatives, new hybrids between chloroquine and sulfadoxine were designed, which gave rise to an important prototype that was more active than both chloroquine and sulfadoxine. Hybrids between chloroquine–atorvastatin and primaquine–atorvastatin were also synthesized and shown to be more potent than the parent drugs alone. Additionally, among the quinoline derivatives, new mefloquine derivatives were synthesized. Among the non-quinoline derivatives, we obtained excellent results with the triazolopyrimidine nucleus, which gave us prototype I that inspired the synthesis of new heterocycles. The pyrazolopyrimidine derivatives stood out as non-quinoline derivatives that are potent inhibitors of the P. falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. We also examined the pyrazolopyridine and pyrazolopyrimidine nuclei.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010042
Author(s):  
Yevel Flores-Garcia ◽  
Lawrence T. Wang ◽  
Minah Park ◽  
Beejan Asady ◽  
Azza H. Idris ◽  
...  

Rare and potent monoclonal antibodies (mAbs) against the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) on infective sporozoites (SPZ) preferentially bind the PfCSP junctional tetrapeptide NPDP or NVDP minor repeats while cross-reacting with NANP major repeats in vitro. The extent to which each of these epitopes is required for protection in vivo is unknown. Here, we assessed whether junction-, minor repeat- and major repeat-preferring human mAbs (CIS43, L9 and 317 respectively) bound and protected against in vivo challenge with transgenic P. berghei (Pb) SPZ expressing either PfCSP with the junction and minor repeats knocked out (KO), or PbCSP with the junction and minor repeats knocked in (KI). In vivo protection studies showed that the junction and minor repeats are necessary and sufficient for CIS43 and L9 to neutralize KO and KI SPZ, respectively. In contrast, 317 required major repeats for in vivo protection. These data establish that human mAbs can prevent malaria infection by targeting three different protective epitopes (NPDP, NVDP, NANP) in the PfCSP repeat region. This report will inform vaccine development and the use of mAbs to passively prevent malaria.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Benjamin Winer ◽  
Kimberly A. Edgel ◽  
Xiaoyan Zou ◽  
Julie Sellau ◽  
Sri Hadiwidjojo ◽  
...  

Abstract Background Immunization with attenuated malaria sporozoites protects humans from experimental malaria challenge by mosquito bite. Protection in humans is strongly correlated with the production of T cells targeting a heterogeneous population of pre-erythrocyte antigen proteoforms, including liver stage antigens. Currently, few T cell epitopes derived from Plasmodium falciparum, the major aetiologic agent of malaria in humans are known. Methods In this study both in vitro and in vivo malaria liver stage models were used to sequence host and pathogen proteoforms. Proteoforms from these diverse models were subjected to mild acid elution (of soluble forms), multi-dimensional fractionation, tandem mass spectrometry, and top-down bioinformatics analysis to identify proteoforms in their intact state. Results These results identify a group of host and malaria liver stage proteoforms that meet a 5% false discovery rate threshold. Conclusions This work provides proof-of-concept for the validity of this mass spectrometry/bioinformatic approach for future studies seeking to reveal malaria liver stage antigens towards vaccine development.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 855
Author(s):  
Paola Serrano Martinez ◽  
Lorena Giuranno ◽  
Marc Vooijs ◽  
Robert P. Coppes

Radiotherapy is involved in the treatment of many cancers, but damage induced to the surrounding normal tissue is often inevitable. Evidence suggests that the maintenance of homeostasis and regeneration of the normal tissue is driven by specific adult tissue stem/progenitor cells. These tasks involve the input from several signaling pathways. Irradiation also targets these stem/progenitor cells, triggering a cellular response aimed at achieving tissue regeneration. Here we discuss the currently used in vitro and in vivo models and the involved specific tissue stem/progenitor cell signaling pathways to study the response to irradiation. The combination of the use of complex in vitro models that offer high in vivo resemblance and lineage tracing models, which address organ complexity constitute potential tools for the study of the stem/progenitor cellular response post-irradiation. The Notch, Wnt, Hippo, Hedgehog, and autophagy signaling pathways have been found as crucial for driving stem/progenitor radiation-induced tissue regeneration. We review how these signaling pathways drive the response of solid tissue-specific stem/progenitor cells to radiotherapy and the used models to address this.


Sign in / Sign up

Export Citation Format

Share Document