scholarly journals Numerical Simulation of the Effect of Dynamic Stress on the Rock Surrounding a Mine Roadway

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jun-hua Xue ◽  
Ke-liang Zhan ◽  
Xuan-hong Du ◽  
Qian Ma

In view of the damage of dynamic stress to the rock surrounding a mine roadway during coal mining, based on the actual geological conditions of Zhuji mine in Huainan, China, a UDEC model was established to study the influences of the thickness and strength of the direct roof above the coal seam and the anchorage effect on the stability of the roadway. The failure mechanism and effect of the dynamic stress on the rock surrounding a mine roadway were revealed. Under dynamic stress, cracks appear near the side of the roadway where the stress is concentrated. These cracks rapidly expand to the two sides of coal and rock mass. At the same time, the coal and rock mass at the top of the roadway fall, and finally, the two sides of coal and rock mass were broken and ejected into the roadway, causing a rock burst. However, when the same dynamic stress is applied to the roadway after supports are installed, there is no large-deformation failure in the roadway, which shows that, under certain conditions, rock bolting can improve the stability and seismic resistance of the surrounding coal and rock mass. Furthermore, by simulating the failure of surrounding rock with different strengths and thicknesses in the immediate roof, it is found that the thinner the roof, the greater the influence of the dynamic stress on the roadway; the stronger the roof is, the more likely the rock burst will occur with greater intensity under the same dynamic stress. A numerical simulation method was used to analyze the factors influencing rock bursting. The results provide a theoretical basis for research into the causes and prevention of rock bursts in deep mining areas.

2012 ◽  
Vol 524-527 ◽  
pp. 446-449 ◽  
Author(s):  
Fu Kun Xiao ◽  
Chun Jie Zhang ◽  
Li Wei Gao ◽  
Yang Yang Yue

On the engineering background of coal mine roadway orbit, according to the destruction of its original roadway, the paper have analyzed the situation of the deformation in the roadway , using the method of numerical simulation. Besides, it also determined the stress distribution and the forces supporting of roadway in the deformation process. Geological conditions, support patterns and bad construction are considered as the main factors of roadway damage and new support method is given. Numerical simulation method is used to study mechanism about anchor rod, anchor cable and anchor mesh coupled with the surrounding, bottom corner anchor rod and grouting to determine the optimal program. The new program is applied to the practice field and monitored, indicating that the application has a very good effect.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2020 ◽  
Vol 24 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Pu Wang ◽  
Lishuai Jiang ◽  
Changqing Ma ◽  
Anying Yuan

The study of evolution laws of the mining-induced stress in floor strata affected by overhead mining is extremely important with respect to the stability and support of a floor roadway. Based on the geological conditions of the drainage roadway in the 10th district in a coalmine, a mechanical model of a working face for overhead mining over the roadway is established, and the laws influencing mining stress on the roadway in different layers are obtained. The evolution of mining stress in floor with different horizontal distances between the working face and the floor roadway that is defined as LD are examined by utilizing UDEC numerical simulation, and the stability of roadway is analyzed. The results of the numerical simulation are verified via on-site tests of the deformation of the surrounding rocks and bolts pull-out from the drainage roadway. The results indicate that the mining stress in floor is high, which decreases slowly within a depth of less than 40 m where the floor roadway is significantly affected. The mining stress in the floor increases gradually, and the effect of the mining on the roadway is particularly evident within 0 m ≤ LD ≤ 40 m. Although the floor roadway is in a stress-relaxed state, the worst stability of the surrounding rocks is observed during the range -20 m ≤ LD < 0 m, in which the negative value indicates that the working face has passed the roadway. The roadway is affected by the recovery of the abutment stress in the goaf when -60 m ≤ LD <20 m, and thus it is important to focus on the strengthening support. The results may provide a scientific basis for establishing a reasonable location and support of roadways under similar conditions.


2013 ◽  
Vol 838-841 ◽  
pp. 889-893
Author(s):  
Biao Li ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The right bank underground powerhouse of Houziyan hydropower station is a typical deep-buried type with high geostress and complicated geological conditions. To monitor and analyze the stability of surrounding rock mass during continuous excavation of the powerhouse excavation and locate the potential failure zones, an ESG (Engineering Seismology Group) microseismic monitoring system manufactured in Canada was installed in April, 2013. The wave velocity of the monitoring system was determined through fixed blasting tests. And the average location error is the minimum while P-wave velocity is 5700m/s, less than 10m and meeting the system request. By combining the temporal and spatial distribution regularity of microseimic events with field excavation, micro-crack clusters and potential instability zones were identified and delineated. The results will provide a reference for later excavations and supports of the underground powerhouse. Furthermore, a new monitoring method can also be supplied for the stability analysis of surrounding rock mass in deep-buried underground powerhouses.


2013 ◽  
Vol 275-277 ◽  
pp. 1383-1388
Author(s):  
Cheng Liang Zhang ◽  
Lei Liu ◽  
Chun Wang

The paper studied a side slope engineering of highway in K29+450~K29+900 sections by making an on-site survey of landform and geological features of the side slope. By combining drilling, high-density electrical method and numerical simulation method, the depth and range of the sliding surface were determined. The stability of the side slope after an excavation in a normal and a rainfall conditions was analyzed using numerical simulation method, and simulation results show that in the normal condition the safety factor of the side slope is 1.12, and it is 1.05 in the rainfall condition; the distribution of plastic zones is wide, especially in the rainfall condition, the side slope has a large deformation and is in an unstable state. When a program of side slope reinforcement is chosen, the impact under rainfall condition should be considered in order to ensure long-term stability of side slope.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wenle Gao ◽  
Zehua Zhang ◽  
Baojie Li ◽  
Kunpeng Li

Based on the particle flow code (PFC2D) within the discrete element method (DEM), the rock mass model was established according to the site rock conditions and the rock mass blasting was simulated by the explosive particle expansion method. The influence of various parameters (the peak pressure action coefficient of the borehole wall, explosive particle buried depth, and charge mode) in the explosive particle expansion method on blasting effect was investigated. Furthermore, the relationship between the various parameters and the geometry size of the blasting crater was obtained. By comparing the size of blasting crater in the field blasting test and numerical simulation example, the reliability of rock mass blasting simulated by the explosive particle expansion method using PFC is verified. The result shows that this paper provides a reliable new numerical simulation method for rock mass blasting and can be used to guide field blasting.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Zhang ◽  
Jinkun Yang ◽  
Jiaxuan Zhang ◽  
Xiaoming Sun ◽  
Chen Chen ◽  
...  

Mining in close distance coal seams (CDCSs) is frequently associated with engineering disasters because of the complicated nature of stress distribution within CDCSs. In order to establish a layout of a roadway to minimize the occurrence of disasters associated with mining CDCS, here the spatial and temporal evolution of stress distribution during the multiworking face mining of a CDCS was explored through numerical simulation based on the engineering and geological conditions of the Nantun Coal Mine. The numerical simulation results indicate that, after the extraction of adjacent multiple working faces, the spatial distribution of stress can be characterized with areas of increased, reduced, and intact stress. The superposed stress of inclined seams that are very close to each other propagates through coal pillars in the bottom floor, and this propagation follows neither the line along the axis of the coal pillar nor the line perpendicular to the direction of the floor. It instead propagates along a line angled with the axis of the coal pillar. The roadway can be arranged in the area with reduced stress, to improve its the stability. Based on the computed spatial and temporal evolution of stress, an optimized layout of roadway was proposed. This layout features a reasonable interval between the mining roadway and a minimal proportion of increased stress areas along the mining roadway and is aligned with geological structures.


2021 ◽  
Author(s):  
Shijiang Pu ◽  
Gui yi Wu ◽  
Qinzhi Liu ◽  
Yuliang Wang ◽  
Qiang Li ◽  
...  

Abstract When gob-side entry retaining is adopted in mining face with large cutting height, due to large stope space, strong dynamic pressure and other reasons, the filling body is usually broken and unstable due to improper width of filling body, and the stability of surrounding rock of roadway is poor. Therefore, this paper will take Shaqu mine as the engineering background to study the reasonable filling body width of gob-side entry retaining in mining face with large cutting height. Firstly, the stability factors of gob-side entry retaining in mining face with large cutting height are analyzed, and the mechanical model of bearing structure of gob-side entry retaining is established based on the lateral pressure and overlying load of filling body, and the reasonable width of filling body is obtained quantitatively; Numerical simulation is used to analyze the evolution of vertical stress, vertical displacement and plastic zone of working face with the change of filling body width. Finally, combined with the deformation observation results of 24207 gob-side entry retaining roof, two sides and filling body, the rationality of filling body width is verified. The results show that: the setting of the width and strength of the filling body plays an important role in the stability of gob-side entry retaining. According to the mechanical model, the minimum width of the filling body is 2.2m in the lateral direction and 3.9m in the vertical direction; Numerical simulation shows that when the width of filling body is too small, with the increase of filling body width, the vertical stress of filling body increases gradually. When the width of filling body reaches a certain value, the vertical stress decreases with the increase of width, and the stress concentration area will change from symmetrical type to eccentric load type, from the middle of filling body to the side of filling body near gob. If the width of the filling body is too small, the filling body will be too broken to bear the load, resulting in too small vertical stress and too large vertical displacement of the roadway roof. The larger the width of the filling body is, the greater the cutting resistance is, the more timely the side roof of the gob can be cut off, the less the stress of the roadway and the filling body, and the more stable the retained roadway is. Finally, through the observation of 24207 gob-side entry retaining, the total deformation of two sides and roof and floor of roadway tends to be stable after 665mm and 597mm respectively. The roof of roadway does not appear severe subsidence and obvious cracking, and the floor does not appear too large floor heave. The effect of roadway retaining is good, which indicates that 4m support can meet the needs of practical engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sen Yang ◽  
Xinzhu Hua ◽  
Xiao Liu ◽  
Chen Li

To determine the impact of influencing factors on unsupported roof stability in coal mine roadway, a mechanical model of the unsupported roof was built. FLAC 3D numerical simulation was utilized to study the stability of the unsupported roof under the influence of the depth of the roadway, the thickness of the roof, and the unsupported-support distance. In view of the key influencing factors, the geological conditions of the site, and the relationship between the tensile stress and tensile strength of the unsupported roof, the maximum unsupported roof distance during roadway excavation was determined. Considering the surplus safety factor of the unsupported roof, the reasonable unsupported roof distance during the excavation of roadway 150802 was finally determined to be 2.08 m. The comprehensive roadway excavation speed increased by 62.7%, achieving a monthly progress over 500 m.


2019 ◽  
Vol 4 (1) ◽  
pp. 57-64
Author(s):  
R. I. Imranov ◽  
E. N. Khmyrova ◽  
O. G. Besimbayeva ◽  
S. P. Olenyuk ◽  
A. Z. Kapasova

The research is aimed at solving problems of assessing underground working stability in complicated mining and geological conditions to increase reliability and safety of mining operations. Analysis of geomechanical processes occurring in a rock mass during extraction of coal seams to determine the stability of mining block roof is the most important task. The performed digital modeling of the rock mass based on the structural logs for K1 seam and the nearest borehole log enabled highly detailed identifying the types of rocks occurred in the seam roof and their strength characteristics, compressive stresses. To determine the stability of a mining block roof, the factor of safety of the rocks was used, which was determined by modeling method using Phase 28.0 and Rockscince software. The carbonaceous argillite parting 0.09–0.12 m thick was taken as the contact of the longwall with the seam roof, and, for completeness of the analysis, the upper high-ash coal member in the seam roof up to 0.7 m thick was used. The modeling findings, presented in the graph of dependence between the safety factor and the distance between the belt heading and air drift, showed that the probability of dome formation in the longwall is high, as the factor of safety of the rocks is less than unity, that indicates the roof instability in the course of the coal seam block extraction. The modeling methods allowed assessing the mine working stability, based on which the measures to improve the reliability and safety of mining operations can be timely developed, and due technical and technological solutions shall be reached.


Sign in / Sign up

Export Citation Format

Share Document