scholarly journals A Comparative Study on 5hmC Targeting Regulation of Neurons in AD Mice by Several Natural Compounds

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dongyi Cao ◽  
Dewei Jiang ◽  
Dongming Zhou ◽  
Hong Yu ◽  
Jiali Li

A series of studies have confirmed that DNA methylation disorder (5mC/5hmC) is closely related to the occurrence and development of some diseases, such as Alzheimer’s disease (AD). This study aims at discovering natural compounds that could adjust and control 5-hydroxymethylcytosine (5hmC) levels and improve Alzheimer’s disease (AD) neuronal status. Cordycepin and cordycepic acid were selected as research materials, with resveratrol as positive control. The results of Dot Blot indicated that cordycepin, cordycepic acid, and resveratrol significantly increased the expression level of 5hmC. Combined with qPCR results, it was revealed that cordycepin increased the expression of ten-eleven translocation (TETs) mRNA compared with the abovementioned cordycepic acid and resveratrol. Besides, cordycepin dramatically reduced the transcription level of Apolipoprotein E (ApoE), suggesting that cordycepin might hinder the formation of NFTs (neurofibrillary tangles) and the accumulation of amyloid β-protein (Aβ) in the brain by reducing the expression of ApoE, resulting in affecting the progression of AD. Meanwhile, the immunofluorescence (IF) staining results demonstrated that the percentage of differentiation of SHSY-5Y cells reasonably increased after the treatment of cordycepin and cordycepic acid. Simultaneously, the length of axons and the number of dendritic branches in mouse primary neurons were substantially increased by cordycepin. The screening results illustrated that cordycepin had a positive influence on the level of 5hmC and the morphology of neurons, and most of the effects were better compared to the positive control (resveratrol). It indicated that cordycepin delayed the progression of neurodegenerative diseases such as AD. However, the specific mechanism of action still needs to be further investigated. Our research provided a foundation for further discussion about the influence of cordycepin on AD and a new idea for the pathological study of related diseases.

Author(s):  
Burbaeva G.Sh. ◽  
Androsova L.V. ◽  
Vorobyeva E.A. ◽  
Savushkina O.K.

The aim of the study was to evaluate the rate of polymerization of tubulin into microtubules and determine the level of colchicine binding (colchicine-binding activity of tubulin) in the prefrontal cortex in schizophrenia, vascular dementia (VD) and control. Colchicine-binding activity of tubulin was determined by Sherlinе in tubulin-enriched extracts of proteins from the samples. Measurement of light scattering during the polymerization of the tubulin was carried out using the nephelometric method at a wavelength of 450-550 nm. There was a significant decrease in colchicine-binding activity and the rate of tubulin polymerization in the prefrontal cortex in both diseases, and in VD to a greater extent than in schizophrenia. The obtained results suggest that not only in Alzheimer's disease, but also in other mental diseases such as schizophrenia and VD, there is a decrease in the level of tubulin in the prefrontal cortex of the brain, although to a lesser extent than in Alzheimer's disease, and consequently the amount of microtubules.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3233 ◽  
Author(s):  
Syed Sayeed Ahmad ◽  
Haroon Khan ◽  
Syed Mohd. Danish Rizvi ◽  
Siddique Akber Ansari ◽  
Riaz Ullah ◽  
...  

Alzheimer’s disease (AD) is a widespread dynamic neurodegenerative malady. Its etiology is still not clear. One of the foremost pathological features is the extracellular deposits of Amyloid-beta (Aβ) peptides in senile plaques. The interaction of Aβ and the receptor for advanced glycation end products at the blood-brain barrier is also observed in AD, which not only causes the neurovascular anxiety and articulation of proinflammatory cytokines, but also directs reduction of cerebral bloodstream by upgrading the emission of endothelin-1 to induce vasoconstriction. In this process, RAGE is deemed responsible for the influx of Aβ into the brain through BBB. In the current study, we predicted the interaction potential of the natural compounds vincamine, ajmalicine and emetine with the Aβ peptide concerned in the treatment of AD against the standard control, curcumin, to validate the Aβ peptide–compounds results. Protein-protein interaction studies have also been carried out to see their potential to inhibit the binding process of Aβ and RAGE. Moreover, the current study verifies that ligands are more capable inhibitors of a selected target compared to positive control with reference to ΔG values. The inhibition of Aβ and its interaction with RAGE may be valuable in proposing the next round of lead compounds for effective Alzheimer’s disease treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ajneesh Kumar ◽  
Vo Minh Doan ◽  
Balázs Kunkli ◽  
Éva Csősz

The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer’s disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer’s disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer’s disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer’s disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer’s disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.


2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Natalia V. Bobkova ◽  
Vadim V. Novikov ◽  
Natalia I. Medvinskaya ◽  
Irina Yu. Aleksandrova ◽  
Eugenii E. Fesenko

Author(s):  
Georgiana Uță ◽  
Denisa Ștefania Manolescu ◽  
Speranța Avram

Background.: Currently, the pharmacological management in Alzheimer's disease is based on several chemical structures, represented by acetylcholinesterase and N-methyl-D-aspartate (NMDA) receptor ligands, with still unclear molecular mechanisms, but severe side effects. For this reason, a challenge for Alzheimer's disease treatment remains to identify new drugs with reduced side effects. Recently, the natural compounds, in particular certain chemical compounds identified in the essential oil of peppermint, sage, grapes, sea buckthorn, have increased interest as possible therapeutics. Objectives.: In this paper, we have summarized data from the recent literature, on several chemical compounds extracted from Salvia officinalis L., with therapeutic potential in Alzheimer's disease. Methods.: In addition to the wide range of experimental methods performed in vivo and in vitro, also we presented some in silico studies of medicinal compounds. Results. Through this mini-review, we present the latest information regarding the therapeutic characteristics of natural compounds isolated from Salvia officinalis L. in Alzheimer's disease. Conclusion.: Thus, based on the information presented, we can say that phytotherapy is a reliable therapeutic method in a neurodegenerative disease.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2017 ◽  
Vol 14 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Sofia Wenzler ◽  
Christian Knochel ◽  
Ceylan Balaban ◽  
Dominik Kraft ◽  
Juliane Kopf ◽  
...  

Depression is a common neuropsychiatric manifestation among Alzheimer’s disease (AD) patients. It may compromise everyday activities and lead to a faster cognitive decline as well as worse quality of life. The identification of promising biomarkers may therefore help to timely initiate and improve the treatment of preclinical and clinical states of AD, and to improve the long-term functional outcome. In this narrative review, we report studies that investigated biomarkers for AD-related depression. Genetic findings state AD-related depression as a rather complex, multifactorial trait with relevant environmental and inherited contributors. However, one specific set of genes, the brain derived neurotrophic factor (BDNF), specifically the Val66Met polymorphism, may play a crucial role in AD-related depression. Regarding neuroimaging markers, the most promising findings reveal structural impairments in the cortico-subcortical networks that are related to affect regulation and reward / aversion control. Functional imaging studies reveal abnormalities in predominantly frontal and temporal regions. Furthermore, CSF based biomarkers are seen as potentially promising for the diagnostic process showing abnormalities in metabolic pathways that contribute to AD-related depression. However, there is a need for standardization of methodological issues and for replication of current evidence with larger cohorts and prospective studies.


2014 ◽  
Vol 13 (8) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohammad Ahmad ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Mahfoozur Rahman ◽  
Mohammad Anwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document