Experimental Investigation into the Influences of Weathering on the Mechanical Properties of Sedimentary Rocks

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoshuang Li ◽  
Yingchun Li ◽  
Saisai Wu

The time-dependent behaviors of the sedimentary rocks which refer to the altering of the mechanical and deformable properties of rock elements in the long-term period are of increasing importance in the investigation of the failure mechanism of the rock strata in underground coal mines. In order to obtain the accurate and reliable mechanical parameters of the sedimentary rocks at different weathering grades, the extensive experimental programs including the Brazilian splitting test, uniaxial compression tests, and direct shear tests have been carried out on the specimens that exposed to the nature environments at different durations. The correlation between the weathering grades and mechanical parameters including uniaxial tensile strength, uniaxial compression strength, elastic modulus, Poisson’s ratio, cohesion, and friction coefficient was proposed. The obtained results suggested that uniaxial tensile strength, uniaxial compressive strength, elastic modulus, and cohesion dramatically decreased with increasing weathering time, characterized as the negative exponential relationship in general. The influences of various weathering grades on fracture behavior of the rock specimens were discussed. The cumulative damage of the rock by the weathering time decreased the friction coefficient of the specimens which led to the initiation and propagation of microcrack within the rock at lower stress conditions. The obtained results improved the understanding of the roles of weathering on the mechanical properties of sedimentary rocks, which is helpful in the design of the underground geotechnical structures.

2015 ◽  
Vol 645-646 ◽  
pp. 926-930 ◽  
Author(s):  
Shuang Shi Yuan ◽  
Guang He ◽  
Ming Zhang ◽  
Guo Zhong Li

MEMS nickel material is commonly used for structural material in micro devices. In order to study the effect of environmental temperature on its mechanical properties,this paper has built up a experimental system which can measure the temperature-related static mechanical parameters of the UV-LIGA nickel material. By using the system for uniaxial tensile experiments of the micro specimen under different temperature, the stress-strain curves of the micro specimen under different temperature were obtained; the mechanical parameters of the micro specimen such as elastic modulus, yield stress and failure stress under different temperature were also calculated out;Finally, the relationship between temperature and mechanical parameters including elastic modulus, yield stress and failure stress was analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Y. Liu ◽  
Qiutong Li ◽  
Xiujie Jiang ◽  
Huan Liu ◽  
Xianpu Yuan ◽  
...  

This paper aimed to study the effect of material static mechanical properties on the fatigue crack initiation life of ω-shaped rail fastening clips, in which the Vossloh 300-1 fastener system was taken as an example. The static mechanical properties of 38Si7 steel (the material of the clip) were first investigated through a series of uniaxial tensile tests. According to the experimental outcomes, a classic assembly system was simulated afterwards using the finite element analysis (FEA) method. On the basis of the Brown–Miller criterion, an in-depth numerical study regarding the critical plane was realized, which allowed fatigue crack initiation to be successfully reproduced by FEA. Finally, a detailed parametric study was performed with the relevant sensitivity analysis. The results showed that the initiation and progression of fatigue cracks in the fastening clip occur in the plane of the maximum shear strain. The fatigue crack initiation life of the fastening clip was extremely sensitive to the elastic modulus, especially more sensitive to the tensile strength. From an engineering viewpoint, the fatigue resistance of the fastening clip could be boosted by (i) increasing the tensile strength of the material to at least 1450 MPa and (ii) rendering the elastic modulus smaller than 160 GPa.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3969
Author(s):  
Shirui Zhang ◽  
Shili Qiu ◽  
Pengfei Kou ◽  
Shaojun Li ◽  
Ping Li ◽  
...  

Granite exhibits obvious meso-geometric heterogeneity. To study the influence of grain size and preferred grain orientation on the damage evolution and mechanical properties of granite, as well as to reveal the inner link between grain size‚ preferred orientation, uniaxial tensile strength (UTS) and damage evolution, a series of Brazilian splitting tests were carried out based on the combined finite-discrete element method (FDEM), grain-based model (GBM) and inverse Monte Carlo (IMC) algorithm. The main conclusions are as follows: (1) Mineral grain significantly influences the crack propagation paths, and the GBM can capture the location of fracture section more accurately than the conventional model. (2) Shear cracks occur near the loading area, while tensile and tensile-shear mixed cracks occur far from the loading area. The applied stress must overcome the tensile strength of the grain interface contacts. (3) The UTS and the ratio of the number of intergrain tensile cracks to the number of intragrain tensile cracks are negatively related to the grain size. (4) With the increase of the preferred grain orientation, the UTS presents a “V-shaped” characteristic distribution. (5) During the whole process of splitting simulation, shear microcracks play the dominant role in energy release; particularly, they occur in later stage. This novel framework, which can reveal the control mechanism of brittle rock heterogeneity on continuous-discontinuous trans-scale fracture process and microscopic rock behaviour, provides an effective technology and numerical analysis method for characterizing rock meso-structure. Accordingly, the research results can provide a useful reference for the prediction of heterogeneous rock mechanical properties and the stability control of engineering rock masses.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2010 ◽  
Vol 97-101 ◽  
pp. 814-817 ◽  
Author(s):  
Jun Deng

One of the greatest drawbacks to predicting the behaviour of bonded joints has been the lack of reliable data on the mechanical properties of adhesives. In this study, methods for determining mechanical properties of structural adhesive were discussed. The Young’s modulus, Poisson’s ratio and tensile strength of the adhesive were tested by dogbone specimens (bulk form) and butt joint specimens (in situ form). The shear modulus and shear strength were test by V-notched specimens (bulk form) and thick adherend lap-shear (TALS) joint specimens (in situ form). The test results show that the elastic modulus provided by the manufacturer is too low, the dogbone specimen is better than the butt joint specimen to test the tensile strength and elastic modulus and the TALS joint specimen is better than the V-notched specimen to test the shear strength.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


Sign in / Sign up

Export Citation Format

Share Document