scholarly journals Improved Adsorption Capacity of Nannochloropsis sp. through Modification with Cetyltrimethylammonium Bromide on the Removal of Methyl Orange in Solution

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Buhani ◽  
Suharso ◽  
Nurul Miftahza ◽  
Desy Permatasari ◽  
Sumadi

In this research, biomass modification of Nannochloropsis sp. with surfactant cetyltrimethylammonium bromide (CTAB) through a cation exchange reaction to produce adsorbent Nannochloropsis sp.-cetyltrimethylammonium bromide (AlgN-CTAB) has been carried out. Biomass modification of Nannochloropsis sp. by CTAB has been successfully carried out through confirmation from the analysis data produced by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX). AlgN-CTAB adsorbent has been tested for its adsorption ability against anionic dye of methyl orange (MO) in solution by way of a sequence of experiments by the batch method. The optimum conditions for MO removal from the solution occurred at an adsorbent quantity of 0.1 g, pH of 5, and an interaction time of 60 min. MO adsorption kinetic data by AlgN and AlgN-CTAB tended to take the kinetic model of pseudo-second-order (PSO) with PSO rate constant ( k 2 ) values of 0.56 and 2.17 g mg-1 min-1, serially. The MO adsorption isotherm pattern by AlgN tends to take the Freundlich adsorption isotherm, whereas in AlgN-CTAB it follows the Langmuir and Dubinin-Radushkevich adsorption isotherms. The results of the adsorption-desorption of MO by AlgN-CTAB with 4 repetition cycles resulted in % removal of MO > 80 % . The AlgN-CTAB adsorbent can be used repeatedly and is very effective in absorbing MO in water.

2021 ◽  
Author(s):  
Buhani . ◽  
Nurul Miftahza ◽  
Suharso . ◽  
Desy Permatasari ◽  
Sumadi .

Abstract In this research, biomass modification of Nannochloropsis sp. with surfactant cetyltrimethylammonium bromide (CTAB) through a cation exchange reaction to produce adsorbent Nannochloropsis sp.-cetyltrimethylammonium bromide (AlgN-CTAB). Biomass modification of Nannochloropsis sp. by CTAB has been successfully carried out through confirmation from the analysis data produced by Fourier-transform infrared spectroscopy and scanning electron microscope & energy-dispersive X-ray spectroscopy. AlgN-CTAB adsorbent has been tested for its adsorption ability against anionic dye of methyl orange (MO) in solution by way of a sequence of experiments by the batch method. The optimum conditions for MO removal from the solution occurred at an adsorbent quantity of 0.1 g, pH of 5, and an interaction time of 60 min. MO adsorption kinetics data by AlgN and AlgN-CTAB tended to take the kinetics model of pseudo-second-order (PSO) with PSO rate constant (k2) values of 0.56 and 2.17 g mg-1min-1, serially. The MO adsorption isotherm pattern by AlgN tends to take the Freundlich adsorption isotherm whereas in AlgN-CTAB, it follows the Langmuir and Dubinin-Raduskevich adsorption isotherms (AIML and AIMDR). The results of the adsorption-desorption of MO by AlgN-CTAB with 4 repetition cycles resulted % removal of MO > 80%. The AlgN-CTAB adsorbent can be used repeatedly and is very effective in absorbing MO in solution.


2018 ◽  
Vol 2017 (1) ◽  
pp. 219-228
Author(s):  
Fengling Liu ◽  
Ziyan Guo ◽  
Hui Qiu ◽  
Xia Lu ◽  
Hua Fang ◽  
...  

Abstract Four kinds of mesoporous carbons, C1-h-w, C2-h-h, C3-s-w, and C4-s-h, with different pore geometries were prepared and characterised, and their adsorption behaviours with aqueous direct yellow 12 (DY-12) were investigated. The results of X-ray diffraction and transmission electron microscopy show that C1-h-w and C3-s-w have wormlike pore characteristics, whereas C2-h-h and C4-s-h have 2-D hexagonally arranged pores. According to the N2 adsorption/desorption results, the specific surface area of C1-h-w (1,378 m2/g) is the largest among the four carbons. The adsorption isotherms could be effectively fitted using the Langmuir model. The maximum adsorption amounts of C1-h-w, C2-h-h, C3-s-w and C4-s-h are 0.968 mmol/g, 0.726 mmol/g, 0.161 mmol/g and 0.156 mmol/g, respectively. The pseudo-second-order rate constants of C1-h-w (39.8 g/(mmol·min)) and C2-h-h (7.28 g/(mmol·min)) are substantially larger than those of C3-s-w (0.0046 g/(mmol·min)) and C4-s-h (0.014 g/(mmol·min)), indicating that an open and interconnected pore geometry is favourable for DY-12 adsorption. Furthermore, DY-12 diffusion in 2-D hexagonally ordered cylindrical pores is superior to that in wormlike pores due to the smoothness of the channels in the former. External mass transfer and intraparticle diffusion both play roles in the adsorption process.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Esmael Salimi ◽  
Jafar Javadpour

Wormhole-like mesostructured monetite was successfully synthesized using cetyltrimethylammonium bromide (C19H42BrN, CTAB), as a porosity agent. X-ray techniques and FTIR reveal that the crystalline grains consist of highly crystalline pure monetite phase. Monetite rods with diameter around 20–40 nm and length in the range of 50–200 nm were confirmed by FESEM and TEM. Based on N2adsorption-desorption isotherms investigation, surface area increased up to 31.5 m2/g due to the removal of surfactant after calcinations at 400°C. The results indicate that CTAB can not only affect monetite crystallization but also change particles morphology from plate shape to rod-like.


2018 ◽  
Vol 11 ◽  
pp. 117862211881168 ◽  
Author(s):  
Christine Jeyaseelan ◽  
Nisha Chaudhary ◽  
Ravin Jugade

Dyes are a major cause of concern nowadays as large quantities are being released into water bodies causing pollution. In this article, modified chitosan (sulphate crosslinked) has been studied for the removal of Congo red (a benzidine-based anionic diazo dye) which is a toxic dye introduced into water bodies from textile industries. Sulphate-crosslinked chitosan (SCC) was prepared in the laboratory and the characterization of SCC was done by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Various parameters such as pH, contact time, adsorbent dosage, and concentration of adsorbent were optimized. The adsorption capacity was determined at pH 3.0, at which the percentage recovery was about 90% and followed Freundlich adsorption isotherm with an adsorption capacity of 91.8 mg/g. The adsorption followed pseudo-second-order kinetics. Various thermodynamic parameters were also determined for the change in adsorption with temperature. The SCC was regenerated with NaOH and showed good recycling capacity. The modified chitosan was applied for the removal of Congo red from industrial wastewater samples (spiked).


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Inas A. Ahmed ◽  
Najlaa S. Al-Radadi ◽  
H. S. Hussein ◽  
Ahmed H. Ragab

In this work, a mesoporous nanocomposite composed of nanogibbsite (α-Al(OH)3) and nanosilica was prepared. Gibbsite nanoparticles (GNPs) with a crystal size of ≈38 nm were prepared from Al-dross industrial waste products in an acidic environment at 100°C. Nanosilica (NS) with a crystal size of ≈13 nm was prepared from sodium silicate using dilute hydrochloric acid. The deposition of nanosilica onto gibbsite particles was investigated. The mesoporous silica-gibbsite (NSG) nanocomposite was examined by evaluating its ability to adsorb the toxic anionic dye Eriochrome black T (EBT) from aqueous solution. The compositional and morphological properties of NSG nanocomposites were studied by means of the FTIR spectroscopy, X-ray fluorescence (XRF), XRD, SEM, and TEM techniques. The effect of dye concentration, pH, adsorbent dose, contact time, and temperature was investigated. The sorption models, the isotherms, and the thermodynamic parameters ΔHo, ΔGo, and ΔSo were evaluated. The N2 adsorption-desorption isotherms revealed that mixing the two prepared materials (NS and GNPs) to form the NSG nanocomposite resulted in good properties (a surface area of 62.34 m2·g−1, a pore radius of 22.717 nm, and a pore volume of 0.7081 cm3·g−1). The results show that the prepared NSG nanocomposite has a remarkable ability to adsorb toxic anionic dyes.


2017 ◽  
Vol 75 (12) ◽  
pp. 2800-2810 ◽  
Author(s):  
Shi-chuan Wu ◽  
Xia You ◽  
Cao Yang ◽  
Jian-hua Cheng

MIL-68(Al), a powdered aluminum-based metal organic framework (MOF), was synthesized and used to explore its adsorption behavior toward methyl orange (MO). The adsorption isotherm, thermodynamics, kinetics, and some key operating factors as well as changes in the material's structure were investigated. The adsorption isotherm conformed to the Langmuir isotherm model and the maximum equilibrium adsorption capacity was 341.30 mg g−1. Thermodynamic data demonstrated that the adsorption process was spontaneous, endothermic and showed positive entropy. For kinetics, the process of MO adsorption onto MIL-68(Al) was more suitably described by a pseudo-second-order model. Electrostatic and hydrogen-bonding interactions contributed to dye adsorption, with electrostatic interactions considered to be the principal binding force between adsorbent and adsorbate. Furthermore, MIL-68(Al) maintained a stable structure after adsorption. From these results, MIL-68(Al) was suggested here to be a stable MOF adsorbent for removing MO from aqueous solution.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5436-5449
Author(s):  
Chao Cao ◽  
Lupeng Shao ◽  
Lucian A. Lucia ◽  
Yu Liu

Magnetic lignin-based adsorbent (MLA) was successfully fabricated to remove methyl orange dye from aqueous solution. The synthesized MLA was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). In the process of adsorption, influence factors and recycling performance were considered, and the adsorption mechanisms such as isotherm and kinetics were investigated. The result showed that the equilibrium data was consisted with the Langmuir model with a maximum adsorption capacity of 85.0 mg/g. The adsorption kinetics followed a pseudo-second-order model. Based the adsorption performance, MLA showed good recyclability. Therefore, these results demonstrate that MLA could offer a great potential as an efficient and reusable adsorbent in the wastewater treatments.


2020 ◽  
Vol 42 (4) ◽  
pp. 550-550
Author(s):  
Houria Rezala Houria Rezala ◽  
Houda Douba Houda Douba ◽  
Horiya Boukhatem and Amaya Romero Horiya Boukhatem and Amaya Romero

A purified raw montmorillonite and hydroxy-aluminum pillared montmorillonite have been prepared from a natural bentonite from Maghnia, Algeria. These materials have been analyzed by X-ray fluorescence spectroscopy, X-ray diffraction, Infrared spectroscopy and nitrogen adsorption-desorption measurement. The pillared montmorillonite provided a certain increase of interlayer basal spacing and BET surface area and consequently the improvement of its capacities adsorption and decolorization of Methylene Blue. The adsorption properties of these materials were studied as a function of contact time, solution pH, initial Methylene Blue concentration and temperature. The adsorption kinetics and isotherms were well fitted by pseudo-second order and Freundlich models, respectively. In addition to that, thermodynamic studies showed an exothermic and a spontaneous process.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 351 ◽  
Author(s):  
Byron Lapo ◽  
Hary Demey ◽  
Tanya Carchi ◽  
Ana Sastre

The presence of antimony(III) in water represents a worldwide concern, mainly due to its high toxicity and carcinogenicity potential. It can be separated from water by the use of sustainable biopolymers such as chitosan or its derivatives. The present study applied chitosan modified with iron(III) beads to Sb(III) removal from aqueous solutions. The resulting material performed with a high adsorption capacity of 98.68 mg/g. Material characterization consisted of Raman spectroscopy (RS), X-ray diffraction (XRD), scanning electron microscope observations (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc). The adsorption study included pH study, effect of initial concentration, kinetics, ion effect, and reusability assessment. The RS, XRD, and FTIR results indicated that the main functional groups in the composite were related to hydroxyl and amino groups, and iron oxyhydroxide species of α-FeO(OH). The pHpzc was found to be 7.41. The best adsorption efficiency was set at pH 6. The equilibrium isotherms were better fitted with a non-linear Langmuir model, and the kinetics data were fitted with a pseudo-second order rate equation. The incorporation of iron into the chitosan matrix improved the Sb(III) uptake by 47.9%, compared with neat chitosan (CS). The material did not exhibit an impact in its performance in the presence of other ions, and it could be reused for up to three adsorption–desorption cycles.


2021 ◽  
Vol 8 (3) ◽  
pp. 234-241
Author(s):  
Paulina Taba ◽  
Mutmainnah Mutmainnah ◽  
Yusafir Hala

Mesoporous silica with cubic structure (MCM-48) was synthesized using Ludox HS40 as silica source and cetyltrimethylammonium bromide (CTAB) as a template. MCM-48 was used to adsorb the antibiotic of tetracycline hydrochloride. An X-ray diffractometer observed the x-ray diffraction pattern of MCM-48 and functional groups observed by a Fourier Transformed Infrared (FTIR) spectrometer. Parameters used to study adsorption were contact time and concentration. The pseudo-second-order was the kinetic order that fitted well with the adsorption of tetracycline HCl. The adsorption of tetracycline HCl on MCM-48 followed the Freundlich isotherm with the adsorption capacity of 0.98 mg/g.


Sign in / Sign up

Export Citation Format

Share Document