scholarly journals Study on the Permeability Evolution Model of Mining-Disturbed Coal

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hengyi Jia ◽  
Delong Zou

Coal permeability plays an important role in the simultaneous exploitation of coal and coal-bed methane (CBM). The stress of mining-disturbed coal changes significantly during coal mining activities, causing damage and destruction of the coal mass, ultimately resulting in a sharp increase in permeability. Conventional triaxial compression and permeability tests were conducted on a triaxial creep-seepage-adsorption and desorption experimental device to investigate the permeability evolution of mining-disturbed coal. The permeability evolution models considering the influence of the stress state and stress path on the fracture propagation characteristics were established based on the permeability difference in the deformation stages of the coal mass. The stress-strain curve of the coal was divided into an elastic stage, yield stage, and plastic flow stage. As the axial stress increased, the permeability decreased and then increased, and the curve’s inflection point corresponded to the yield point. The permeability models exhibited a good agreement with the experimental data and accurately reflected the overall trends of the test results. The results of this study provide a theoretical basis for coal mine disaster prevention and the simultaneous exploitation of coal and CBM.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2677
Author(s):  
Zetian Zhang ◽  
Ru Zhang ◽  
Zhiguo Cao ◽  
Mingzhong Gao ◽  
Yong Zhang ◽  
...  

The gas permeability and mechanical properties of coal, which are seriously influenced by mining-induced stress evolution and gas pressure conditions, are key issues in coal mining and enhanced coalbed methane recovery. To obtain a comprehensive understanding of the effects of mining-induced stress conditions and gas pressures on the mechanical behavior and permeability evolution of coal, a series of mining-induced stress unloading experiments at different gas pressures were conducted. The test results are compared with the results of conventional triaxial compression tests also conducted at different gas pressures, and the different mechanisms between these two methods were theoretically analyzed. The test results show that under the same mining-induced stress conditions, the strength of the coal mass decreases with increasing gas pressure, while the absolute deformation of the coal mass increases. Under real mining-induced stress conditions, the volumetric strain of the coal mass remains negative, which means that the volume of the coal mass continues to increase. The volumetric strain corresponding to the peak stress of the coal mass increases with gas pressure in the same mining layout simulation. However, in conventional triaxial compression tests, the coal mass volume continues to decrease and in a compressional state, and there is no obvious deformation stage that occurs during the mining-induced stress unloading tests. The theoretical and experimental analyses show that mining-induced stress unloading and gas pressure changes greatly impact the deformation, failure mechanism and permeability enhancement of coal.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xuefeng Han ◽  
Tingxiang Chu ◽  
Minggao Yu ◽  
Jiangkun Chao ◽  
Zhihui Ma ◽  
...  

In order to study the dynamic change law of the porosity of the compacted broken coal under different axial stress loading, based on the environment of the broken and compacted coal in the gob, aiming at the influence of the porosity on the spontaneous combustion of the coal, combined with the fractal theory, the fractal model of the porosity of the broken coal is established. A self-designed “testing device for permeability evolution and spontaneous combustion characteristics of crushed coal under pressure” is used to carry out axial loading test on selected coal samples in the gob. By comparing and analyzing the calculated results of void dynamic evolution model and experimental data, it is found that the relative error of void dynamic evolution model is between 2.8% and 6.2%, which meets the engineering needs. According to the stress-strain curve, initial accumulation state parameters, fractal dimension of initial crushing, and particle size distribution, the change of porosity under different compacted conditions can be predicted by the model, which has certain significance for identifying the change of compacted broken coal porosity and analyzing the process of coal spontaneous combustion and oxidation.


2011 ◽  
Vol 250-253 ◽  
pp. 2089-2092
Author(s):  
Rong Jian Li ◽  
Xi An Li ◽  
Gao Feng Che ◽  
Wen Zheng ◽  
Wen Jun Chen

Stress path is one of the very important factors of soil strength. It is significant to study the strength and reveal the importance of the impact of sand in different stress path conditions. Firstly, an ameliorating approach on implementing for the reduced triaxial extension by the conventional triaxial apparatus was discussed. Then, In order to study shear behaviors of the eolian sand under different stress path, two monotonic shearing tests with the conventional triaxial compression and the reduced triaxial extension stress path were performed and analyzed. The test results not only indicate that the amelioration on conventional triaxial apparatus is simple, practicable and inexpensive, but also reveal the difference of strength’s parameter between the reduced triaxial extension and conventional triaxial compression stress path. In sum, the stress path has important effect on the strength of the eolian sand.


2011 ◽  
Vol 368-373 ◽  
pp. 2891-2894
Author(s):  
San Qing Su ◽  
Bo Tuan Deng ◽  
Jun Feng Hou ◽  
Zhen Lv

The conventional triaxial compression(CTC), triaxial compression(TC) and reduce triaxial compression(RTC) of ordinary loess in Xi,an Ba He was conducted with GDS stress path tests and the strength behavior and deformation capacity of loess was studied. The experimental results showed that the larger the initial moisture content, the smaller the shear strength. The strength characteristic of loess varied under different stress path. Relationships between σ and ε was strain hardening model. The peak strength of CTC is larger than that of TC and the peak strength of RTC was smaller.


2021 ◽  
Author(s):  
Yuan-Jian LIN ◽  
Jiang-Feng LIU ◽  
Tao CHEN ◽  
Shi-Jia MA ◽  
Pei-Lin WANG ◽  
...  

Abstract In this paper, a THMC multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, the axial stress has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tianzuo Wang ◽  
Linxiang Wang ◽  
Fei Xue ◽  
Mengya Xue ◽  
Hangcheng Xie ◽  
...  

Liquid nitrogen (LN2), which can greatly improve the efficiency of hot dry rock (HDR) mining, is commonly used as a cooling material in the enhanced geothermal system (EGS). Physical property, triaxial compression, and permeability tests were undertaken on treated granite samples, for a better scientific understanding of the effect of the LN2 cooling method on the mechanical and permeability properties of the rocks after heat treatment. The experimental results indicated that the physical properties of the treated granite change significantly, such as the density and wave velocity are substantially reduced. Meanwhile, with the increase of treatment temperature, the macroscopic cracks on its surface are gradually generated and the volume is expanded clearly. In addition, the surface wettability of granite gradually increases with increasing temperature. Compared with the air/water cooling methods, under LN2 cooling condition, the mechanical properties decrease markedly. When the temperature exceeds 600°C, the granite strength decreases significantly to only 56.16% of the reference value. The deformation properties also change significantly, with a final strain of about 3% at failure for a sample at 800°C, showing an obvious ductile deformation characteristic. Further, an appreciable correlation also exists between the initial permeability of granite and temperature. Once the temperature exceeds 200°C, the increase in temperature contributes to the increase in initial permeability. In addition to the effect of temperature, the increase in load also leads to a change in the permeability coefficient. When the temperature reaches 600°C, the permeability of granite first decreases and then increases with the increases in axial stress. The results of this paper are valuable in understanding the effect of thermal shock by LN2 on the fracturing efficiency and permeability characteristics of dry hot rocks.


2014 ◽  
Vol 18 (5) ◽  
pp. 1497-1504 ◽  
Author(s):  
Ze-Tian Zhang ◽  
Zhang Ru ◽  
Jian-Feng Liu ◽  
Xiao-Hui Liu ◽  
Jia-Wei Li

As coal mass is often at unloading status during mining process, it is of great significance to push on the research on permeability evolution of unloaded coal samples at different loading rates. A series of triaxial unloading experiments were conducted for initially intact coal samples using an improved rock mechanics testing system, and the permeability was continuously measured by the constant pressure differential method for methane. Permeability evolution law of unloaded coal samples and the influence mechanism of loading rates on that were studied. The results of triaxial unloading experiments indicate that the permeability of coal samples increases throughout the whole testing process without a descent stage, which is different from the permeability evolution law in conventional triaxial compression tests. The maximum permeability of unloaded coal sample, which is 4 to 18 times to its initial permeability, often appears before reaching the peak stress and increases with the decrease of axial loading rate. Stress state corresponding to the surge point of permeability of the unloaded coal samples is also discussed.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Yu Wang ◽  
Huajian Wang ◽  
Xiaolong Zhou ◽  
Xuefeng Yi ◽  
Yonggang Xiao ◽  
...  

This work presents an experimental study that focused on the meso-damage evolution of cemented waste rock-tailing backfill (CWRTB) under triaxial compression using the in situ X-ray computed tomography (CT) technique. Although numerous investigations have studied the magnitude of the strength of CWRTB material, the mesoscopic damage evolution mechanisms under triaxial deformation are still poorly understood. Artificial CWRTB samples with a waste rock proportion of 30% were prepared by mixing tailings, waste rock, cement, and water. A specific self-developed loading device was used to match the CT machine to real-time CT scanning for the CWRTB sample. A series of 2D CT images were obtained by performing CT imaging at five key points throughout the test and from three positions in the sample. The CT values, for the purpose of meso-damage evolution in CWRTB, were identified. The results showed that the axial stress–strain curve presented strain hardening characteristics. The CT data revealed the inhomogeneous damage field inside the CWRTB sample and the most severely damaged regions that were usually located at the waste block-tailings paste interfaces. The changes in CT values for the different regions of interest (ROI) revealed the complicated interactions between the waste blocks and the tailings paste matrix. The meso-structural changes, formation of the localized bands, and the associated stress dilatancy phenomenon were strongly influenced by the interactions between the waste blocks and tailing paste.


2011 ◽  
Vol 90-93 ◽  
pp. 28-32
Author(s):  
Mohamed A. Shahin ◽  
Alice Cargeeg

The procedure for conventional triaxial compression (CTC) test requires three separate soil specimens to be examined to failure under different confining pressures so that Mohr-Coulomb (or stress path) failure envelope can be determined and soil shear strength parameters can be obtained. An alternative procedure is the multi-stage triaxial (MST) compression test, which requires only one soil specimen to be tested at three stages of shearing with different confining pressures. There are several advantages for using MST over CTC, which apart from fewer soil specimens, include less laboratory time consumption and reduced effects of heterogeneity among the specimens tested. However, it has been argued in the literature that the advantages of using MST may be compromised by its inability to obtain reliable soil behavior or accurate shear strength parameters. In this paper, the accuracy of MST compared to CTC is investigated for a c-phi soil, and a simple procedure that can be adopted to rectify the MST results is proposed.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1653
Author(s):  
Guofu Li ◽  
Yi Wang ◽  
Junhui Wang ◽  
Hongwei Zhang ◽  
Wenbin Shen ◽  
...  

Deep coalbed methane (CBM) is widely distributed in China and is mainly commercially exploited in the Qinshui basin. The in situ stress and moisture content are key factors affecting the permeability of CH4-containing coal samples. Therefore, considering the coupled effects of compressing and infiltrating on the gas permeability of coal could be more accurate to reveal the CH4 gas seepage characteristics in CBM reservoirs. In this study, coal samples sourced from Tunlan coalmine were employed to conduct the triaxial loading and gas seepage tests. Several findings were concluded: (1) In this triaxial test, the effect of confining stress on the permeability of gas-containing coal samples is greater than that of axial stress. (2) The permeability versus gas pressure curve of coal presents a ‘V’ shape evolution trend, in which the minimum gas permeability was obtained at a gas pressure of 1.1MPa. (3) The gas permeability of coal samples decreased exponentially with increasing moisture content. Specifically, as the moisture content increasing from 0.18% to 3.15%, the gas permeability decreased by about 70%. These results are expected to provide a foundation for the efficient exploitation of CBM in Qinshui basin.


Sign in / Sign up

Export Citation Format

Share Document