scholarly journals Identification of Chemical Components of Qi-Fu-Yin and Its Prototype Components and Metabolites in Rat Plasma and Cerebrospinal Fluid via UPLC-Q-TOF-MS

2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Hengyu Li ◽  
Hongwei Zhao ◽  
Yong Yang ◽  
Dongmei Qi ◽  
Xiaorui Cheng ◽  
...  

Qi-Fu-Yin, a traditional Chinese medicine formula, has been used to treat Alzheimer’s disease (AD, a neurodegenerative disorder) in clinical setting. In this study, the chemical components of Qi-Fu-Yin and its prototype components and metabolites in rat plasma and cerebrospinal fluid, after oral administration, were preliminarily characterized via ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). A total of 180 compounds, including saponins, flavonoids, organic acids, sucrose esters, oligosaccharide esters, phthalides, phenylethanoid glycosides, alkaloids, xanthones, terpene lactones, ionones, and iridoid glycoside, were tentatively characterized. For the first time, 51 prototypical components and 26 metabolites, including saponins, phthalides, flavonoids, sucrose esters, organic acids, alkaloids, ionones, terpene lactones, iridoid glycoside, and their derivatives, have been tentatively identified in the plasma. Furthermore, 10 prototypical components (including butylidenephthalide, butylphthalide, 20(S)-ginsenoside Rh1, 20(R)-ginsenoside Rh1, and zingibroside R1) and 6 metabolites were preliminarily characterized in cerebrospinal fluid. These results were beneficial to the discovery of the active components of Qi-Fu-Yin anti-AD.

2020 ◽  
Vol 11 ◽  
Author(s):  
Huijun Wang ◽  
Ruoming Wu ◽  
Dong Xie ◽  
Liqin Ding ◽  
Xing Lv ◽  
...  

Wei-Fu-Chun (WFC) tablet is a commercial medicinal product approved by China Food and Drug Administration, which is made of Panax ginseng C.A.Mey., Citrus aurantium L., and Isodon amethystoides (Benth.). WFC has been popularly used for the treatment of precancerous lesions of gastric cancer (PLGC) in clinical practice. In this study, a UHPLC-ESI-Q-TOF/MS method in both positive and negative ion mode was employed to rapidly survey the major constituents of WFC. 178 compounds including diterpenoids, triterpenes, sesquiterpenes, flavonoids, saponins, phenylpropanoids, lignans, coumarins, organic acids, fatty acids, quinones, and sterols, were identified by comparing their retention times, accurate mass within 5 ppm error, and MS fragmentation ions. In addition, 77 absorbed parent molecules and nine metabolites in rat serum were rapidly characterized by UHPLC-ESI-Q-TOF/MS. The network pharmacology method was used to predict the active components, corresponding therapeutic targets, and related pathways of WFC in the treatment of PLGC. Based on the main compounds in WFC and their metabolites in rat plasma and existing databases, 13 active components, 48 therapeutic targets, and 61 pathways were found to treat PLGC. The results of PLGC experiment in rats showed that WFC could improve the weight of PLGC rats and the histopathological changes of gastric mucosa partly by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathway to increase pepsin secretion. This study offers an applicable approach to identify chemical components, absorbed compounds, and metabolic compounds in WFC, and provides a method to explore bioactive ingredients and action mechanisms of WFC.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xinxin Chen ◽  
Junmao Li ◽  
Renyikun Yuan ◽  
Youqiong Zhuo ◽  
Yangling Chen ◽  
...  

Ilicis Rotundae Cortex (IRC) consists of the bark of Ilex rotunda Thunb, and its chemical constituents mainly include flavonoid glycosides, phenols, and triterpenoid saponins. In this study, a preliminary analysis was performed to identify and obtain the chemical components from IRC to better control the quality of the medicinal materials and provide a chemical basis for the study of the efficacy of the active components. Simple and efficient sample pretreatment and ultrasonic-assisted extraction methods were used to analyze the mass spectrum fragments and fracture modes in the anion mode by UPLC-Q-TOF-MS/MS. Using a two-step strategy, the neutral loss, diagnostic ions, and characteristic fragments were studied to screen diverse skeletons and substitutions, and the possible compounds were identified by comparison with databases. The representative compounds were compared with the standard, and the mass spectrogram was found to match perfectly. Thus, our findings reveal that this method is feasible and reliable and can be used to analyze the chemical components of IRC. We identified 105 compounds, including 22 triterpenoid saponins, 15 chlorogenic acids, 33 phenylpropanoids and phenylpropanosides, 3 iridoids, 1 flavonoid, 10 lignans, 12 glycosides, and 9 other compounds. This method lays the foundation for further elucidating the pharmacodynamics of IRC and provides a practical method for the identification of IRC.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Sijia Gao ◽  
Jirui Wang ◽  
Lei Cheng ◽  
Yuxin Fan ◽  
Weihan Qin ◽  
...  

In this study, the effects of different processing techniques on the chemical components of Raphani Semen (RS) were evaluated. An established high-performance liquid chromatography (HPLC) method was adopted for the simultaneous determination of glucoraphanin, sinapine thiocyanate, raphanin, and erucic acid in the fried products of Raphani Semen to evaluate the chemical changes during frying processing as well as optimize the best frying technology of Raphani Semen. Then, the chemical components in the fried Raphani Semen were identified by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A total of 54 compounds in processed Raphani Semen were identified by UPLC-Q-TOF-MS. The results showed that the content of glucoraphanin and sinapine thiocyanate was the highest in the fried products at 130°C for 10 min, and the effect of “Enzyme Killing and Glycosides Preserving” was the best. Therefore, this condition was chosen as the best frying technology of Raphani Semen. This study provided a more scientific basis for evaluation of the quality of Raphani Semen fried products and optimization of the frying technology of Raphani Semen.


Author(s):  
I. A. Kyazimova ◽  
А. А. Kasumova ◽  
А. А. Nabiev

Production of plant products, including juices around the world increases continuously. In the fruit and vegetable juices contain a significant amount of monosaccharides (glucose and fructose), organic acids, vitamins, phenolic compounds, mineral substances and other biologically active components that determine the nutritional and dietary value. For the prevention of various diseases associated with impaired metabolic processes, we developed a new technology of preparation of food by blending juice of pumpkin, quince and persimmon. Thus prepared organic blended juice contains a substantial amount of free glucose and fructose, different phenolic compounds, a sufficient amount of organic acids, mineral elements, including iodine and other components that determine its nutritional and biological value. In prepared juices were evaluated the quantitative indicators of β-carotene, vitamin C, glucose and fructose, sucrose, starch, pectin substances. Also in the atomic absorbtion spectrometer Analyst 400 (PerkinElmer, USA) was analyzed content of the organic acids and phenolic compounds. Prepared juices were tested in accordance with 10 point scoring scale. It is established that all juices contain a sufficient amount of the minerals. In pumpkin and quince juices not contain iodine while it presents in sufficient amount in persimmon juice that’s why in the blended juice mineral in addition to mineral elements iodine are contained. In pumpkin and persimmon aliphatic acids are contained in small amount. For this reason during the blending process was used quince juice which is rich in aliphatic acids. The blended juice is light straw color, with delicious flavor, a slight astringent property and a balanced taste.


Author(s):  
Gulinigaer Anwaier ◽  
Cong Wen ◽  
Yi-ni Caoili ◽  
Rong Qi

: As a medicinal fungus, Inonotus obliquus (IO) has been widely used in the treatment of cancer and digestive system diseases. Despite the progress that has been made in the studies of IO and its active compounds, their applications in other important clinical diseases, such as cardiovascular diseases, which are major global issues with limited treatment strategies, are seldom reported. This review summarizes the separation and purification methods of chemical components of IO, the advances in their applications, and research progress on the pharmacological effects and related mechanisms of IO in disease prevention. This review will help researchers and clinicians to further understand the pharmacological functions and mechanisms of IO and its active components, which may extend their medical applications in the prevention and treatment of other diseases in addition to tumors and digestive system diseases in the near future.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 883
Author(s):  
Yuxuan Liang ◽  
Riming Huang ◽  
Yongchun Chen ◽  
Jing Zhong ◽  
Jie Deng ◽  
...  

Hemerocallis citrina Baroni (HC) is an edible plant in Asia, and it has been traditionally used for sleep-improvement. However, the bioactive components and mechanism of HC in sleep-improvement are still unclear. In this study, the sleep-improvement effect of HC hydroalcoholic extract was investigated based on a caffeine-induced insomnia model in Drosophila melanogaster (D. melanogaster), and the ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-ESI-Orbitrap-MS) and network pharmacology strategy were further combined to screen systematically the active constituents and mechanism of HC in sleep-improvement. The results suggested HC effectively regulated the number of nighttime activities and total sleep time of D. melanogaster in a dose-dependent manner and positively regulated the sleep bouts and sleep duration of D. melanogaster. The target screening suggested that quercetin, luteolin, kaempferol, caffeic acid, and nicotinic acid were the main bioactive components of HC in sleep-improvements. Moreover, the core targets (Akt1, Cat, Ple, and Sod) affected by HC were verified by the expression of the mRNA of D. melanogaster. In summary, this study showed that HC could effectively regulate the sleep of D. melanogaster and further clarifies the multi-component and multi-target features of HC in sleep-improvement, which provides a new insight for the research and utilization of HC.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110167
Author(s):  
Xing-Pan Wu ◽  
Tian-Shun Wang ◽  
Zi-Xin Yuan ◽  
Yan-Fang Yang ◽  
He-Zhen Wu

Objective To explore the anti-COVID-19 active components and mechanism of Compound Houttuynia mixture by using network pharmacology and molecular docking. Methods First, the main chemical components of Compound Houttuynia mixture were obtained by using the TCMSP database and referring to relevant chemical composition literature. The components were screened for OB ≥30% and DL ≥0.18 as the threshold values. Then Swiss Target Prediction database was used to predict the target of the active components and map the targets of COVID-19 obtained through GeneCards database to obtain the gene pool of the potential target of COVID-19 resistance of the active components of Compound Houttuynia mixture. Next, DAVID database was used for GO enrichment and KEGG pathway annotation of targets function. Cytoscape 3.8.0 software was used to construct a “components-targets-pathways” network. Then String database was used to construct a “protein-protein interaction” network. Finally, the core targets, SARS-COV-2 3 Cl, ACE2 and the core active components of Compound Houttuyna Mixture were imported into the Discovery Studio 2016 Client database for molecular docking verification. Results Eighty-two active compounds, including Xylostosidine, Arctiin, ZINC12153652 and ZINC338038, were screened from Compound Houttuyniae mixture. The key targets involved 128 targets, including MAPK1, MAPK3, MAPK8, MAPK14, TP53, TNF, and IL6. The HIF-1 signaling, VEGF signaling, TNF signaling and another 127 signaling pathways associated with COVID-19 were affected ( P < 0.05). From the results of molecular docking, the binding ability between the selected active components and the core targets was strong. Conclusion Through the combination of network pharmacology and molecular docking technology, this study revealed that the therapeutic effect of Compound Houttuynia mixture on COVID-19 was realized through multiple components, multiple targets and multiple pathways, which provided a certain scientific basis of the clinical application of Compound Houttuynia mixture.


Sign in / Sign up

Export Citation Format

Share Document