scholarly journals Hypoglycemic Effects of Plant Flavonoids: A Review

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Foo Sok Yen ◽  
Chan Shu Qin ◽  
Sharryl Tan Shi Xuan ◽  
Puah Jia Ying ◽  
Hong Yi Le ◽  
...  

Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.

2019 ◽  
Vol 20 (6) ◽  
pp. 1517 ◽  
Author(s):  
Kai Wang ◽  
Yu Su ◽  
Yuting Liang ◽  
Yanhui Song ◽  
Liping Wang

Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.


2020 ◽  
Vol 8 (16) ◽  
pp. 56-64
Author(s):  
Karla Guadalupe Perez-Avila ◽  
Cruz Vargas-De-León ◽  
José Antonio Morales-González ◽  
Eduardo Madrigal-Santillán

Diabetes mellitus is a disease that is characterized by the chronic presence of blood glucose levels caused by a defect in the secretion of insulin or in the action of this hormone in the body which must be treated integrally with a multidisciplinary approach. The natural treatment of this disease is a common practice around the world, especially in Latin America, there are several clinical studies, in vivo or in vitro assays that focus on assessing the hypoglycemic capacity of various natural products used empirically by the population for years for the phytotherapeutic treatment of the disease as well as the chemicals related to the mechanism of action that produces the hypoglycaemic effect. In the present article, a brief review of the evidence of the hypoglycemic capacity of some natural products for the alternative treatment of diabetes mellitus 2


2014 ◽  
Vol 92 (6) ◽  
pp. 438-444 ◽  
Author(s):  
Haniah Solaimani ◽  
Nepton Soltani ◽  
Kianoosh MaleKzadeh ◽  
Shahla Sohrabipour ◽  
Nina Zhang ◽  
...  

It has been previously shown that oral magnesium administration decreases the levels of glucose in the plasma. However, the mechanisms are not fully understood. The aim of this study was to determine the potential role of GLUT4 on plasma glucose levels by orally administering magnesium sulfate to diabetic rats. Animals were distributed among 4 groups (n = 10 rats per group): one group served as the non-diabetic control, while the other groups had diabetes induced by streptozotocin (intraperitoneal (i.p.) injection). The diabetic rats were either given insulin by i.p. injection (2.5 U·(kg body mass)–1·day–1), or magnesium sulfate in their drinking water (10 g·L–1). After 8 weeks of treatment, we conducted an i.p. glucose tolerance test (IPGTT), measured blood glucose and plasma magnesium levels, and performed in-vitro and in-vivo insulin level measurements by radioimmunoassay. Gastrocnemius (leg) muscles were isolated for the measurement of GLU4 mRNA expression using real-time PCR. Administration of magnesium sulfate improved IPGTT and lowered blood glucose levels almost to the normal range. However, the insulin levels were not changed in either of the in-vitro or in-vivo studies. The expression of GLU4 mRNA increased 23% and 10% in diabetic magnesium-treated and insulin-treated groups, respectively. Our findings suggest that magnesium lowers blood glucose levels via increased GLU4 mRNA expression, independent to insulin secretion.


2005 ◽  
Vol 33 (2) ◽  
pp. 371-374 ◽  
Author(s):  
B. Leighton ◽  
A. Atkinson ◽  
M.P. Coghlan

The monomeric enzyme GK (glucokinase) has a low affinity for glucose and, quantitatively, is largely expressed in the liver and pancreatic β-cells, playing a key ‘glucose sensing’ role to regulate hepatic glucose balance and insulin secretion. Mutations of GK in man can be inactivating, to cause a form of diabetes mellitus, or activating, to lower blood glucose levels. Recently, models of GK protein structure have helped to elucidate the role of inactivating and activating mutations, with the latter revealing an allosteric binding site, possibly for an unknown physiological activator. However, this discovery was pre-dated by Drug Discovery projects that have identified small organic molecules that activate pancreatic and liver GK enzyme activity. These compounds stimulate insulin secretion in islets and glucose metabolism in hepatocytes. The profile of these GK activators, both in vitro and in vivo and the potential role that GK activators play in lowering blood glucose levels in Type II diabetes mellitus will be discussed.


Author(s):  
Zuneera Akram ◽  
Aisha Noreen ◽  
Muzammil Hussain ◽  
Maryam Inayat ◽  
Sobia Akhter ◽  
...  

Diabetes mellitus has high global prevalence and occurrence and is considered to bean endocrinological and/or metabolic disorder. Conventional drug treatment is costly and has toxic side effects, although it is successful in treating diabetes mellitus. If effective and less toxic, herbal medicine will thus include alternative therapy. This research has been designed to investigate the role of Grewia asiatica extract in the control of diabetes in male albino rats with Streptozotocin mediated type 2 diabetes. Grewia asiatica fruit extract at a dose of 200mg/kg was given to Streptozotocin mediated type II DM Rats. A known anti-diabetic drug, Glibenclamide has been used as a standard drug. The method of the research was to monitor the effect of Grewia asiatica on the blood glucose level of Rats. In this study, Rats were split into four categories i.e. Control, Streptozotocin treated, Streptozotocin + Glibenclamide treated and Streptozotocin +Grewia asiatica extract-treated group.  Grewia asiatica fruit extract significantly improve the blood glucose levels as compared to the standard drug Glibenclamide in Streptozotocin mediated diabetic group. Conclusion: It was concluded that Grewia asiatica may be used in the treatment of diabetes or decreasing the elevated level of blood sugar.


2020 ◽  
Vol 17 (2) ◽  
pp. 46
Author(s):  
Pascalis Adhi Kurniawan ◽  
Rinawati Satrio

Diabetes Mellitus is a metabolic disorder characterized by an increase in blood glucose levels (hyperglycemia) due to disturbances in insulin secretion and insulin action. Diabetes mellitus (DM) is a disease characterized by high blood glucose levels, because the body cannot release or use insulin adequately. There are many factors that trigger or aggravate periodontitis, including plaque accumulation, calculus (tartar), and systemic factors such as diabetes mellitus. Objective: To explain that there is a close relationship between elevated blood glucose levels and periodontitis. Case Description: A 77 year old woman presented with a loose left upper tooth and pain during eating. The patient admitted to having a history of systemic disease, namely diabetes mellitus. Intra oral examination was found on 27th grade 3 luxation, 6 mm gingival recession, 4 mm probing depth, debris around the teeth, oral hygiene tends to be poor. The therapy provided is in the form of education on the effect of diabetes mellitus on teeth and the condition of the oral cavity in general, as well as the importance of maintaining health and food consumption so that blood sugar conditions are controlled. Conclusion: Periodontal disease can be affected by DM. Periodontitis is one of the manifestations of DM in the oral cavity. The severity of periodontitis can result from an increase in blood glucose levels.


2019 ◽  
Vol 54 (4) ◽  
Author(s):  
José M. Narváez-Mastache ◽  
Claudia Soto ◽  
Guillermo Delgado

Subcoriacin (1) is a 3-aryl-6-prenylcoumarin isolated from Eysenhardtia subcoriacea that has shown antioxidant activity in vitro, and has shown to scavenge free radicals and also to improve the reduced glutathione levels in pancreatic homogenates. The present investigation evaluates the protective effect of 1 against oxidative injury in normal and streptozotocin (STZ)-induced diabetic rats. The i.p. administration of 1 at a dose of 100 mg/kg body weight for 5 d, significantly decreased blood glucose levels and improved the endogenous antioxidant system. Also, a significant increase in the activities of the antioxidant enzymes glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) occurred. Combined treatment of rats with 1 (100 mg/kg) and STZ significantly reduced the pancreatic levels of thiobarbituric acid reactive substances (TBARS) levels. Likewise, significant increases in the activities of the antioxidant enzymes together with a decrease in blood glucose levels in both treatments were observed. The results demonstrate and support the relationship between the hypoglycemic and antioxidant activities displayed by the natural compound 1.


2019 ◽  
Vol 19 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Mohammed Ajebli ◽  
Fadwa El Ouady ◽  
Mohamed Eddouks

Background and Objective: Warionia saharae Benth & Coss, a plant belonging to Asteraceae family, is used for its anti-diabetic properties in Morocco. The objective of this study was to evaluate the effect of tannins extracted from Warionia saharae (W. saharae) on blood glucose levels and lipid profile in normal and streptozotocin(STZ)-induced diabetic rats. Methods: Tannins (TE) were extracted from W. saharae using Soxhlet apparatus and different organic solvents. Single and once daily repeated oral administration of TE (10 mg/kg) for 15 days were used to evaluate the glucose and lipid-lowering activity in normal and diabetic rats. Furthermore, glucose test tolerance, liver histopathological examination and in vitro antioxidant activity of TE were carried out in this study. Results: The results showed that TE was able to exert antihyperglycemic and lowering total cholesterol effects as well as improvement of the high-density lipoprotein (HDL)-cholesterol serum level after 15 days of treatment. Furthermore, TE improved glucose tolerance, histopathological status of liver in diabetic rats and demonstrated interesting antioxidant activity. Conclusion: In conclusion, the present investigation revealed that TE possesses potent antidiabetic and antihyperlipidemic activities as claimed in different ethnopharmacological practices.


2021 ◽  
pp. 1-8
Author(s):  
Jae-Hun Lee ◽  
Sang Hee Ji ◽  
Jae Yun Jung ◽  
Min Young Lee ◽  
Chi-Kyou Lee

Introduction: Diabetes mellitus (DM) is a systemic disease characterized by hyperglycemia and several pathological changes. DM-related hearing dysfunctions are associated with histological changes. Here, we explore hearing function and synaptic changes in the inner hair cells (IHCs) of rats with streptozotocin (STZ)-induced diabetes. Methods: STZ was injected to trigger diabetes. Rats with DM were exposed to narrow-band noise (105 dB SPL) for 2 h, and hearing function was analyzed 1, 3, 7, and 14 days later. Both the hearing threshold and the peak 1 amplitude of the tone auditory brainstem response were assessed. After the last functional test, animals were sacrificed for histological evaluation. Results: We found no changes in the baseline hearing threshold; however, the peak 1 amplitude at the low frequency (4 kHz) was significantly higher in both DM groups than in the control groups. The hearing threshold had not fully recovered at 14 days after diabetic rats were exposed to noise. The peak 1 amplitude at the higher frequencies (16 and 32 kHz) was significantly larger in both DM groups than in the control groups. The histological analysis revealed that the long-term DM group had significantly more synapses in the 16 kHz region than the other groups. Conclusions: We found that high blood glucose levels increased peak 1 amplitudes without changing the hearing threshold. Diabetic rats were less resilient in threshold changes and were less vulnerable to peak 1 amplitude and synaptic damage than control animals.


2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


Sign in / Sign up

Export Citation Format

Share Document