scholarly journals Evidence of the hypoglycemic capacity of some natural products for the alternative treatment of diabetes mellitus type 2

2020 ◽  
Vol 8 (16) ◽  
pp. 56-64
Author(s):  
Karla Guadalupe Perez-Avila ◽  
Cruz Vargas-De-León ◽  
José Antonio Morales-González ◽  
Eduardo Madrigal-Santillán

Diabetes mellitus is a disease that is characterized by the chronic presence of blood glucose levels caused by a defect in the secretion of insulin or in the action of this hormone in the body which must be treated integrally with a multidisciplinary approach. The natural treatment of this disease is a common practice around the world, especially in Latin America, there are several clinical studies, in vivo or in vitro assays that focus on assessing the hypoglycemic capacity of various natural products used empirically by the population for years for the phytotherapeutic treatment of the disease as well as the chemicals related to the mechanism of action that produces the hypoglycaemic effect. In the present article, a brief review of the evidence of the hypoglycemic capacity of some natural products for the alternative treatment of diabetes mellitus 2

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Foo Sok Yen ◽  
Chan Shu Qin ◽  
Sharryl Tan Shi Xuan ◽  
Puah Jia Ying ◽  
Hong Yi Le ◽  
...  

Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.


2019 ◽  
Vol 20 (6) ◽  
pp. 1517 ◽  
Author(s):  
Kai Wang ◽  
Yu Su ◽  
Yuting Liang ◽  
Yanhui Song ◽  
Liping Wang

Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.


2019 ◽  
pp. 15-22
Author(s):  
Khoa Bao Chau Thai ◽  
Huu Tien Nguyen ◽  
Huu Dung Tran

Introduction: Nowadays, resistant starches are interested as a supplement food by effecting on the limit of postprandial blood glucose increase and supporting for the diabetes treatment. Recently, we have semisynthesized the acetylated wheat starch (AWS) oriented for supporting the treatment of diabetes mellitus, which is the RS4 formed by chemical structure modification. AWS has been proved itself to show strong resistance to amylase activity in-vitro as well as to be safety in-vivo. Materials and Methods: In this study, we continued to evaluate AWS’s ability to limit postprandial blood glucose increase and determined shortchain fatty acids (SCFAs) metabolized from AWS in the gastrointestinal tract of healthy mice by HPLC. Results: the mice fed AWS exhibited a very limited increase in blood glucose levels and remained stable for 2 hours after meals comparing with the control group (mice fed natural wheat starch) (NWS). Simultaneously, the content of SCFAs produced in the caecum of the mice fed AWS was significantly higher than mice fed NWS, especially with acetic and propionic acids by 28% and 26%, respectively. Conclusion: AWS has been shown to limit postprandial hyperglycemia in mice effectively through the resistance to amylase hydrolysis in the small intestine. When going into the caecum, it is fermented to form SCFAs that provide a part of the energy for the body’s activities and to avoid rotten fermentation causing digestive disorders, which are inherent restrictions of normal high cellulose and fiber food. Key words: acetylated wheat starch, natural wheat starch, SCFA, blood glucose


2020 ◽  
Vol 21 (8) ◽  
pp. 2889 ◽  
Author(s):  
Pei-Li Yao ◽  
Jeremy Peavey ◽  
Goldis Malek

Vasculogenesis and angiogenesis are physiological mechanisms occurring throughout the body. Any disruption to the precise balance of blood vessel growth necessary to support healthy tissue, and the inhibition of abnormal vessel sprouting has the potential to negatively impact stages of development and/or healing. Therefore, the identification of key regulators of these vascular processes is critical to identifying therapeutic means by which to target vascular-associated compromises and complications. Nuclear receptors are a family of transcription factors that have been shown to be involved in modulating different aspects of vascular biology in many tissues systems. Most recently, the role of nuclear receptors in ocular biology and vasculopathies has garnered interest. Herein, we review studies that have used in vitro assays and in vivo models to investigate nuclear receptor-driven pathways in two ocular vascular diseases associated with blindness, wet or exudative age-related macular degeneration, and proliferative diabetic retinopathy. The potential therapeutic targeting of nuclear receptors for ocular diseases is also discussed.


JURNAL PANGAN ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 11-22
Author(s):  
Arfina Sukmawati Arifin

The high number of free radicals that are not balanced with the amount of antioxidants in the body triggers oxidative stress. Oxidative stress causes impaired vascular function, damage to proteins and lipids in membrane cell, and nucleic acid (DNA) mutations. Chronic cell damage has a negative effect on tissue that triggers various diseases such as neurodegenerative diseases (Alzheimer's, Parkinson's), cardiovascular diseases (hypertension, arteriosclerosis, and others), cataracts, retinal damage, maculopathy, rheumatoid arthritis, asthma, stroke, diabetes mellitus , immunodepression, cancer, aging, hyperoxia, dermatitis, and others. The application of a healthy lifestyle for example by consuming food sources of bioactive compounds can minimize health risks. Rice is the staple food of the Indonesian people. Some types of rice contain red and black pigments which are known to have high antioxidant activity compared to white rice. The pigment comes from anthocyanin and proanthocyanidin. Various studies in vitro and in vivo prove that anthocyanin and proantocyanidine act as antioxidants and potency as a preventative for various diseases such as cardiovascular, diabetes mellitus, and etc.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhuo Liu ◽  
Jing Gong ◽  
Wenya Huang ◽  
Fuer Lu ◽  
Hui Dong

In recent years, many studies of Momordica charantia (MC) in the treatment of diabetes mellitus (DM) and its complications have been reported. This article reviewed the effect and mechanism of MC against diabetes, including the results from in vitro and in vivo experiments and clinical trials. The common side effects of MC were also summarized. We hope that it might open up new ideas for further mechanism exploration and clinical application as well as provide a scientific theoretical basis for the development of drugs or foods derived from MC.


2021 ◽  
Vol 28 ◽  
Author(s):  
Joanda Paolla Raimundo e Silva ◽  
Chonny Alexander Herrera Acevedo ◽  
Thalisson Amorim de Souza ◽  
Renata Priscila Barros de Menezes ◽  
Zoe L. Sessions ◽  
...  

Background: Natural products are useful agents for the discovery of new lead-compounds and effective drugs to combat coronaviruses (CoV). Objective: The present work provides an overview of natural substances, plant extracts, and essential oils as potential antiSARS-CoV agents. In addition, this work evaluates their drug-like properties which are essential in the selection of compounds in order to accelerate the drug development process. Methods: The search was carried out using PubMed, ScienceDirect and SciFinder. Articles addressing plant-based natural products as potential SARS-CoV or SARS-CoV-2 agents within the last seventeen years were analyzed and selected. The descriptors for Chemometrics analyzes were obtained in alvaDesc and the principal component analyzes (PCA) were carried out in SIMCA version 13.0. Results: Based on in vitro assays and computational analyzes, this review covers twenty nine medicinal plant species and more than 300 isolated substances as potential anti-coronavirus agents. Among them, flavonoids and terpenes were the most promising compound classes. In silico analyses of drug-like properties corroborate these findings and indicate promising candidates for in vitro and in vivo studies to validate their activity. Conclusion: This paper highlights the role of ethnopharmacology in drug discovery and simulates the use of integrative (in silico/ in vitro) and chemocentric approaches to strengthen current studies and guide future research in the field of antivirals agents.


2005 ◽  
Vol 33 (2) ◽  
pp. 371-374 ◽  
Author(s):  
B. Leighton ◽  
A. Atkinson ◽  
M.P. Coghlan

The monomeric enzyme GK (glucokinase) has a low affinity for glucose and, quantitatively, is largely expressed in the liver and pancreatic β-cells, playing a key ‘glucose sensing’ role to regulate hepatic glucose balance and insulin secretion. Mutations of GK in man can be inactivating, to cause a form of diabetes mellitus, or activating, to lower blood glucose levels. Recently, models of GK protein structure have helped to elucidate the role of inactivating and activating mutations, with the latter revealing an allosteric binding site, possibly for an unknown physiological activator. However, this discovery was pre-dated by Drug Discovery projects that have identified small organic molecules that activate pancreatic and liver GK enzyme activity. These compounds stimulate insulin secretion in islets and glucose metabolism in hepatocytes. The profile of these GK activators, both in vitro and in vivo and the potential role that GK activators play in lowering blood glucose levels in Type II diabetes mellitus will be discussed.


2020 ◽  
Vol 11 (2) ◽  
pp. 2008-2017
Author(s):  
Shraddha Sharma ◽  
Vengal Rao P ◽  
Seema Mehdi ◽  
Manjula S N ◽  
Aalap Das

Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia arising from deregulation in insulin secretion, insulin action, or both. The current synthetic drugs have dose-dependent side effects which confined their uses. The phytochemicals are the natural compounds that have better therapeutic efficacy and interacts synergistically with oral hypoglycemic drugs. The addition of phytochemicals with OHDs may reduce the dose of synthetic drugs as well as their side effects and toxicity. A detailed outline about such combinations like Ferulic acid & THZ/Metformin, Ellagic acid & Pioglitazone (THZ), Chlorogenic acid & THZ/Metformin, Caffeic acid & THZ/Metformin, eugenol acid & THZ/Metformin, cinnamic acid & THZ/Metformin, p- coumaric acid & THZ/Metformin, Arecoline &Vanillic acid with the THZ/ Metformin have been illustrated. This review has also discussed the synergy and mechanism of phytochemical with the OHDs to combat hyperglycemia and other risk associated with it. A comprehensive review was conducted to pile up the information about polyphenols & synthetic drug combinations used for the treatment of diabetes mellitus, which has been carried out in-vitro or in-vivo and may contribute to identifying novel strategies in the treatment of T2D condition. This review shows the importance of the responsible bioactive agents present in medicinal plants in the drive to demonstrate their antidiabetic effects.


Sign in / Sign up

Export Citation Format

Share Document