scholarly journals Dynamic Mathematical Model of Information Spreading on News Platform

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guohui Song ◽  
Yongbin Wang ◽  
Yugang Li

In recent years, the news platform has become the primary source of information for users. However, there are few studies on the news platform, especially for the analysis and modeling of the spreading process of information. This article models the dynamic process of information spreading on the news platform. Firstly, we analyze the dynamic characteristics of user state and information value. Users of news platforms have two states, active and silent states, and users can switch between these two states. The information value determines the probability of user state conversion. We construct the mathematical model for the dynamic features of user state and information value considering these characteristics. Then, with appropriate parameter assumptions, simulation experiments are performed to analyze the regularity of information spreading. The results of the experiment show that the user’s reading speed 1 / r and the conversion probability p α , β , t are important indicators that affect user state conversion. The lower reading speed and higher conversion probability can improve the transformation of the user state. Furthermore, we present some applications to promote information spreading, such as assessing the effectiveness of information spreading and controlling rumors on news platforms. Finally, we analyzed the effect of its information dissemination by taking Toutiao as an example and confirmed that the visibility and quality of information are important factors that affect information spreading. The experiments and analysis show that the dynamic mathematical model can reflect the information spreading in different situations with different parameters on the news platform.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Sebastian Różowicz

Abstract The paper presents the results of analytical and experimental studies concerning the influence of different kinds of fuel additives on the quality of the spark discharge for different configurations of the ignition system. The wear of the spark plug electrode and the value of spark discharge were determined for various impurities and configurations of the air-fuel mixture.


2021 ◽  
pp. 200-206
Author(s):  
I.N. Sedinin ◽  
V.F. Makarov

It is considered the complex of operations of the technological process for the heat treatment of steel 95X18-Sh, as a result of which the material of the samples increases the hardness to 59...61 HRC, and also improves the physical and mechanical properties. A full-scale full factorial experiment of face milling of samples was carried out using the method of mathematical planning. In the experiments, a high-precision machine and a carbide cutting tool were used. To calculate the values of the roughness function, the following are taken as independent variables: cutting speed, feed per tooth and depth of cut. In order to determine the coefficients of the linear equation, a central compositional orthogonal plan of the second order for three factors was used. A matrix of levels of variation of independent variable factors and a matrix of experiment planning were compiled. A regression analysis of the obtained experimental statistical data was carried out using the Microsoft Excel, Statistica and Wolfram Alpha programs. As a result of the calculations, a mathematical model of the roughness of the machined surface and optimal cutting conditions were determined.


2021 ◽  
pp. 68-72
Author(s):  
Il'ya A. Meshchikhin ◽  
Sergej S. Gavryushin

As part of the development of monitoring systems for the operation of technical objects, the problem of improving the quality of monitoring systems for the loaded state is considered. Based on the analysis of the mathematical model of the structure and its loading, a methodology for the selection of measuring instruments was developed. The urgency of the problem of calculating substantiation of the choice of key points of the structure is shown, at which it is possible to measure deformations for the subsequent restoration of the existing loads with maximum accuracy. An approach based on the envelope method for determining the rational composition of measuring instruments for restoring the loads acting on the structure is stated.


Author(s):  
Satya Swesty Widiyana ◽  
Rus Indiyanto

ABSTRACTThis study was taken from the problems in Heaven Store ranging from turnover does not reach the target, the different display products for each branch, and a just few reference customer visiting from problems in customer satisfaction. because the values of input and output obtained from each branch has a different values so demanding customers Heaven Store to correct weaknesses in the efficiency of customer service and satisfaction, then we tried to respond to the challenges of these improvements to the study "Analysis of Measurement Efficiency Services Methods Data envelopment analysis (DEA) In Heaven Store in West Surabaya "So in this study, researchers will assist the managementHeaven Store for measuring the level of efficiency that Heaven store along 5th branches can improve the quality of service by using data envelopment analysis (DEA), which is a methods that determine the level of efficiency similar organization where efficiency is not determined by the organization concerned. It is hoped this analysis will help the management to withdraw the customer so that the customer can buy the products that are sold in Heaven Store. After calculation of the mathematical model by referring to the calculation of the mathematical model DEA CRS, obtained the efficiency 0.8479688 on the fifth branch Heaven Store, then after an improvement in input and output according to the reference fixes the target model of DEA CRS, then the value of the relative efficiency DMU 5 can be increased from 0.8479688 (inefficient) to 1.000000 (efficient). Keywords: Data Envelopment Analysis, customer satisfaction, efficiency


Author(s):  
Sandesh Mahamure ◽  
Poonam N. Railkar ◽  
Parikshit N. Mahalle

Now we are in the era of ubiquitous computing. Internet of things (IoT) is getting matured in various parts of the world. In coming few years' billions and trillions of things will be connected to the internet. To deal with these huge number of devices in a network we need to consider Quality of Service (QoS)parameters so that system operations can be performed in a smoother way. Mathematical modelling of these QoS parameters gives an idea about which factors are needs to consider while designing any IoT-enabled system at the same time it will give the performance analysis of the system before implementation. In this paper comprehensive literature survey is done to discuss various issues related to QoS and gap analysis is also done for IoT Enabled systems. This paper proposes general steps to build a mathematical model for a system. It also proposes the mathematical model for QoS parameters like reliability, communication complexities, latency and aggregation of data for IoT. To support proposed mathematical model proof of concept also given.


2011 ◽  
Vol 55-57 ◽  
pp. 2018-2022
Author(s):  
Yu Feng Li ◽  
Chun Ling Wang

A mathematical model is created, and the algorithm is designed according to the fuzzy clustering. The main indices of the soy sauce samples are detected, and the data are analyzed using fuzzy clustering. As a result, many classes including different soy sauce sample can be obtained, and the quality within the same class is similar. The mathematical model and algorithm provide a method to identification the soy sauce. And in the others, it provides a new method to evaluate the quality of the soy sauce.


Author(s):  
Sergii Karnaukh

The purpose of this work is to study the known method of division of pipes by introducing a figure knife and the development of promising designs of equipment for division of pipes into measured workpieces. Based on the analysis of the actuating crank-slider mechanisms used in the equipment for division of pipes into measured workpieces, promising schemes of short-connecting rod mechanisms have been discovered that provide a local pipe section along the perimeter. The developed design of the device for dividing pipes into dimensional workpieces by the eccentric twisting method, which contains a wedge-joint mechanism in combination with a compact circular actuator, also allows to reduce energy and power costs for separation, reduce the consequences of instantaneous unloading of equipment and ensure high quality workpieces. A mathematical model of the proposed equipment was developed and the modeling of the cutting process was carried out using the DEFORM-3D software package. The analysis of the results obtained showed that in the extreme positions of the knives, jamming of the knives is possible. To eliminate jamming, it is necessary that the knives do not reach the extreme position. The adequacy of the mathematical model is confirmed by experimental studies. The error of the calculated and measured values of the torque on the cutting knife does not exceed 10%. This is due to the need for a more correct accounting of friction on the contact surfaces of the equipment. Cut tubular blanks have high geometric accuracy and high quality of the cut surface.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 151-157
Author(s):  
Sergey Alekseevich Rykov ◽  
Irina Kudryavtseva ◽  
Sergey Vladimirovich Rykov

The results of theoretical and experimental studies of the modulation of vibrations of rotary machines have been presented at rotation frequency. It has been shown that at the rotation frequency, the possible causes of the origin of the “side” spectral discrete components are the presence of a clearance and friction in bearing units. On the basis of the data obtained in the mathematical model, the diagnostic methods of the quality of functioning the bearing unit of rotary mechanisms are proposed.


Author(s):  
Anoop Kumar. M Et.al

Ejector flow in an ejector air conditioning system using R245fa is analysed for entrainment ratio and potential refrigeration effect, at varying temperature and heat input conditions in  the generator ranging from 60C to 100C and 2kW to 5kW respectively. The effect of varying generator temperature in cooling capacity of the system when the vapour ejectoris operating at design evaporator and condenser temperatures of 10C and 35C respectively is investigated. The mathematical model of the vapour ejector with optimum area ratio is developed and validated. A critical entrainment ratio of 0.385 is obtained corresponding to generator temperature of 100C. When the generator temperature is varied from 60C to 100C, the cooling capacity range from 0.3kW at generator heat input of 2 kW to 1.78 kW at 5 kW heat input. Further, the operation of the system is analysed for off design operating condition corresponding to reduced heat input rate in the generator. In that case the state of primary refrigerant flow in ejector inlet will be two phase and a mathematical model for two-phase ejector flow is developed and validated. Ejector flow analysis revealed the minimum quality of flow at ejector inlet to maintain adequate backpressure for condensation to occur range from 0.72 at 60C to 0.22 at 100C. The corresponding refrigeration refrigeration effect produced is less than the respective designed operation value byits  12.2% to 8%. Further, analysis of the system shows that at least 7 kW heat input at 100C is required to produce 1 ton of cooling effect. Ejector flow in an ejector air conditioning system using R245fa is analysed for entrainment ratio and potential refrigeration effect, at varying temperature and heat input conditions in  the generator ranging from 60C to 100C and 2kW to 5kW respectively. The effect of varying generator temperature in cooling capacity of the system when the vapour ejectoris operating at design evaporator and condenser temperatures of 10C and 35C respectively is investigated. The mathematical model of the vapour ejector with optimum area ratio is developed and validated. A critical entrainment ratio of 0.385 is obtained corresponding to generator temperature of 100C. When the generator temperature is varied from 60C to 100C, the cooling capacity range from 0.3kW at generator heat input of 2 kW to 1.78 kW at 5 kW heat input. Further, the operation of the system is analysed for off design operating condition corresponding to reduced heat input rate in the generator. In that case the state of primary refrigerant flow in ejector inlet will be two phase and a mathematical model for two-phase ejector flow is developed and validated. Ejector flow analysis revealed the minimum quality of flow at ejector inlet to maintain adequate backpressure for condensation to occur range from 0.72 at 60C to 0.22 at 100C. The corresponding refrigeration refrigeration effect produced is less than the respective designed operation value byits  12.2% to 8%. Further, analysis of the system shows that at least 7 kW heat input at 100C is required to produce 1 ton of cooling effect.


2020 ◽  
Vol 216 ◽  
pp. 01070
Author(s):  
Ivan Bandurin ◽  
Vladimir Ivanov ◽  
Igor Kozyrev ◽  
Vladimir Korobov ◽  
Alexey Khaimin ◽  
...  

Today, the increase in reactive power consumption far exceeds the increase in active power consumption. Due to the increasing demands of the end-users for the quality of the supply of electricity, the problem of joint selection of rational sections and places of installation of reactive power compensation in the distribution line becomes relevant. A mathematical model and algorithm allowing such a choice are proposed. The mathematical model can be used both in the design of new lines and in the reconstruction of existing lines. An example is given.


Sign in / Sign up

Export Citation Format

Share Document