scholarly journals Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sheng-Yu Lu ◽  
Song Guo ◽  
Shao-Bin Chai ◽  
Jia-Qi Yang ◽  
Yuan Yue ◽  
...  

The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Manqiu Ding ◽  
Yongqiang Chen ◽  
Yue Lang ◽  
Li Cui

Prion protein has two isoforms including cellular prion protein (PrPC) and scrapie prion protein (PrPSc). PrPSc is the pathological aggregated form of prion protein and it plays an important role in neurodegenerative diseases. PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein that can attach to a membrane. Its expression begins at embryogenesis and reaches the highest level in adulthood. PrPC is expressed in the neurons of the nervous system as well as other peripheral organs. Studies in recent years have disclosed the involvement of PrPC in various aspects of cancer biology. In this review, we provide an overview of the current understanding of the roles of PrPC in proliferation, cell survival, invasion/metastasis, and stem cells of cancer cells, as well as its role as a potential therapeutic target.



2021 ◽  
Author(s):  
Yang Sun ◽  
Yan Ding ◽  
Jiao Qu ◽  
Chenyang Zhang ◽  
Yuyu Zhu ◽  
...  

Psoriasis is a chronic inflammatory disease which infiltrated a large number of neutrophils among skin lesions. Here, we investigated the contribution of tyrosine phosphatase SHP2 in neutrophils, as well as its pathogenesis in psoriasis. We combined single-cell RNA sequencing with experimental verification to declare that SHP2 in neutrophils could promote the NETs formation through the ERK5 pathway, and resulted in the infiltration of inflammatory immune cells, which leads to psoriasis. Our study provides evidence for the role of SHP2 in NETosis in the progression of psoriasis, and SHP2 may be a potential therapeutic target for the treatment of psoriasis.



2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Iyad Khamaysi ◽  
Preeti Singh ◽  
Susan Nasser ◽  
Hoda Awad ◽  
Yehuda Chowers ◽  
...  


2018 ◽  
Vol 41 (4) ◽  
pp. 343-351 ◽  
Author(s):  
Gustav van Niekerk ◽  
Anna-Mart Engelbrecht


2020 ◽  
Vol 319 (3) ◽  
pp. R282-R287
Author(s):  
Maycon I. O. Milanez ◽  
Erika E. Nishi ◽  
Cássia T. Bergamaschi ◽  
Ruy R. Campos

The control of sympathetic vasomotor activity involves a complex network within the brain and spinal circuits. An extensive range of studies has indicated that sympathoexcitation is a common feature in several cardiovascular diseases and that strategies to reduce sympathetic vasomotor overactivity in such conditions can be beneficial. In the present mini-review, we present evidence supporting the spinal cord as a potential therapeutic target to mitigate sympathetic vasomotor overactivity in cardiovascular diseases, focusing mainly on the actions of spinal angiotensin II on the control of sympathetic preganglionic neuronal activity.



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fei Fei Guo ◽  
Jiu Wei Cui

Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.



Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 587 ◽  
Author(s):  
Matilda Munksgaard Thorén ◽  
Katarzyna Chmielarska Masoumi ◽  
Cecilia Krona ◽  
Xiaoli Huang ◽  
Soumi Kundu ◽  
...  

New, effective treatment strategies for glioblastomas (GBMs), the most malignant and invasive brain tumors in adults, are highly needed. In this study, we investigated the potential of integrin α10β1 as a therapeutic target in GBMs. Expression levels and the role of integrin α10β1 were studied in patient-derived GBM tissues and cell lines. The effect of an antibody–drug conjugate (ADC), an integrin α10 antibody conjugated to saporin, on GBM cells and in a xenograft mouse model was studied. We found that integrin α10β1 was strongly expressed in both GBM tissues and cells, whereas morphologically unaffected brain tissues showed only minor expression. Partial or no overlap was seen with integrins α3, α6, and α7, known to be expressed in GBM. Further analysis of a subpopulation of GBM cells selected for high integrin α10 expression demonstrated increased proliferation and sphere formation. Additionally, siRNA-mediated knockdown of integrin α10 in GBM cells led to decreased migration and increased cell death. Furthermore, the ADC reduced viability and sphere formation of GBM cells and induced cell death both in vitro and in vivo. Our results demonstrate that integrin α10β1 has a functional role in GBM cells and is a novel, potential therapeutic target for the treatment of GBM.



2020 ◽  
Vol 21 (15) ◽  
pp. 5242 ◽  
Author(s):  
Misaq Heydari ◽  
María Eugenia Cornide-Petronio ◽  
Mónica B. Jiménez-Castro ◽  
Carmen Peralta

The review describes the role of adiponectin in liver diseases in the presence and absence of surgery reported in the literature in the last ten years. The most updated therapeutic strategies based on the regulation of adiponectin including pharmacological and surgical interventions and adiponectin knockout rodents, as well as some of the scientific controversies in this field, are described. Whether adiponectin could be a potential therapeutic target for the treatment of liver diseases and patients submitted to hepatic resection or liver transplantation are discussed. Furthermore, preclinical and clinical data on the mechanism of action of adiponectin in different liver diseases (nonalcoholic fatty disease, alcoholic liver disease, nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma) in the absence or presence of surgery are evaluated in order to establish potential targets that might be useful for the treatment of liver disease as well as in the practice of liver surgery associated with the hepatic resections of tumors and liver transplantation.



Sign in / Sign up

Export Citation Format

Share Document