scholarly journals Mechanism of Baclofen Inhibiting the Proliferation and Metastasis of GBM by Regulating YAP

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lin Zhu ◽  
Juan Lu ◽  
Zhijun Bao ◽  
Shiwen Guo

This study explores the effect of baclofen on the malignant phenotype of glioblastoma (GBM) and the growth of xenograft tumors and investigates the related mechanisms, aiming to reveal the effect of baclofen on the occurrence and development of GBM. The development of new therapeutic drugs for GBM lays a theoretical and experimental foundation. Research results show that baclofen could inhibit GBM cell proliferation and migration and promote GBM cell apoptosis; baclofen dose- and time-dependently could induce GBM cell YAP phosphorylation. YAP participated in the effect of baclofen on GBM cell proliferation and migration inhibition. Baclofen induced YAP phosphorylation in GBM cells through the GABABR2-Gs-Lats1/2 signaling pathway. Baclofen could inhibit the expression of survivin and Bcl2. Baclofen inhibits subcutaneous tumors by inducing YAP phosphorylation in vivo.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


Author(s):  
Qinhua Liu ◽  
Ruonan Ran ◽  
Zhengsheng Wu ◽  
Xiaodan Li ◽  
Qingshu Zeng ◽  
...  

The present study was directed toward laying new findings for Extranodal natural killer/T-cell lymphoma (ENKL)-oriented therapy with a focus on long non-coding RNA (lncRNA)–microRNAs (miRNAs)–mRNA interaction. The expression and function of XIST (X-inactive specific transcript) were analyzed both in vivo and in vitro. The online database of lncRNA-miRNA interaction was used to screen the target of XIST, and miR-497 was selected. Next, the predicted binding between XIST and miR-497, and the dynamic effect of XIST and miR-497 on downstream Bcl-w was evaluated. We found that XIST dramatically increased in the blood of ENKL patients and cell lines. XIST knockdown suppressed the cell proliferation and migration in vivo and in vitro. Herein, we confirmed the negative interaction between XIST and miR-497. Moreover, XIST knockdown reduced the protein levels of Bcl-w, a downstream target of miR-497. XIST sponges miR-497 to promote Bcl-w expression, and finally modulating ENKL cell proliferation and migration. To be interested, inhibition of Bcl-w by ABT737 can overcome the high expression of XIST, and suppressed the ENKL proliferation and migration by inducing apoptosis. This study provided a novel experimental basis for ENKL-oriented therapy with a focus on the lncRNA–miRNA–mRNA interaction.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769118 ◽  
Author(s):  
Jianguang Jin ◽  
Zhijie Chu ◽  
Pengfei Ma ◽  
Yuanpu Meng ◽  
Yanhui Yang

SIRT1 plays an important role in human malignant progression, inducing cancer cell proliferation and metastasis by regulating downstream gene expressions. However, little is known about the underlying mechanisms in which SIRT1 promotes pancreatic cancer tumorigenesis. The aim of this study is to investigate the SIRT1 expression levels and biological functions in promoting pancreatic cancer progression. We first investigated the expression of SIRT1 in a series of pancreatic cancer tissues as well as in a panel of pancreatic cancer cell lines. The effect of SIRT1 on cell activity was explored by knockdown experiments. Cell growth was measured using the MTT assay and colony-formation assay. Migration and invasion were tested using transwell assay. Our results showed that the expression of SIRT1 was significantly up-regulated both in pancreatic cancer tissues and cell lines. Knockdown of SIRT1 suppressed cell proliferation and migration of pancreatic cancer cells. This is the first report to disclose the role of SIRT1 in regulation of pancreatic cancer cell proliferation and migration, which may provide a potential therapeutic target for pancreatic cancer patients.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


2021 ◽  
Author(s):  
Jie Hua ◽  
Qingcai Meng ◽  
Chen Liang ◽  
Miaoyan Wei ◽  
Jiang Liu ◽  
...  

Abstract Background: The aim of this study was to explore the role of leucine-rich α2-glycoprotein 1 (LRG1) in the biological function and prognosis of pancreatic cancer.Methods: LRG1 was detected in serum and tissue specimens from patients with pancreatic cancer by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, and immunohistochemical (IHC) analysis. LRG1-overexpressing and LRG1-knockdown cell lines were established with lentiviral vectors containing LRG1-overexpression and shRNA plasmids, respectively. Colony formation, Cell Counting Kit-8 (CCK-8), wound healing, Transwell migration, and in vivo tumorigenicity assays were conducted to assess proliferation and migration of the pancreatic cancer cells. RNA sequencing was performed to identify potential downstream molecules of LRG1.Results: Serum LRG1 levels were significantly elevated in patients with pancreatic cancer compared with healthy controls. The mRNA and protein levels of LRG1 were higher in cancer tissues than in adjacent normal tissues. High LRG1 expression was significantly associated with shorter overall survival and found to be an independent risk factor for poor prognosis. Additionally, LRG1 dramatically promoted cell proliferation and migration in vitro and accelerated tumor growth in vivo. By RNA sequencing, we identified Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L) as a potential downstream molecule of LRG1. Further validation experiments confirmed a positive correlation between LRG1 and DTX3L.Conclusions: LRG1 is a valuable prognostic marker for pancreatic cancer that plays a crucial role in cell proliferation and migration. Targeting LRG1 or the downstream molecule DTX3L provides a novel strategy for the treatment of pancreatic cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haorui Zhang ◽  
Bocen Chen ◽  
Zixiu Zou ◽  
Jian Feng ◽  
Yutao Li ◽  
...  

BackgroundThe 5-year survival rate of patients with lung cancer in China is less than 20% and predicting their prognosis is challenging. We investigated the association between a common non-synonymous single nucleotide polymorphism (SNP), rs7214723, in the Ca2+/calmodulin-dependent protein kinase kinase 1 (CAMKK1) gene and the prognosis of patients with lung cancer.MethodsGenomic DNA was extracted from the blood samples of 839 patients with lung cancer, recruited from Changhai Hospital (n = 536) and Taizhou Institute of Health Sciences (n = 352), and genotyped using the SNPscan technique. The association between patient prognosis and the genotypic data for CAMKK1 was analyzed using a multivariate Cox proportional hazards model adjusted for multiple potential confounders. The CRISPR/Cas9 gene-editing system was used to introduce point mutations in the CAMKK1 rs7214723 of A549 and NCI-H358 cells. Subsequently, Cell proliferation and migration ability were assessed with the Cell Counting Kit-8 and scratch assay. The Annexin V-FITC apoptosis detection kit was used to detect cell apoptosis.ResultsThe CAMKK1 rs7214723 recessive CC genotype conferred significantly better overall survival (CC vs. TT + TC: adjusted hazard ratio = 0.78, 95% confidence interval [CI], 0.61-1.00, P = 0.049) than the TT + TC genotypes. Stratified analysis showed that the CAMKK1 rs7214723 CC genotype and recessive CC genotype conferred a significantly decreased risk of death in patients who were male, had a smoking history, or had stage III + IV cancer, compared with the TT and TT + TC genotypes. Relative to the TT + TC genotypes, the rs7214723 recessive CC genotype was also associated with a decreased risk of death in patients aged < 60 years (CC vs. TT + TC: adjusted hazard ratio = 0.59, 95% CI, 0.37-0.93, P = 0.024) and patients with squamous cell carcinoma (CC vs. TT + TC: adjusted hazard ratio = 0.65, 95% CI, 0.44-0.98, P = 0.038). Remarkably, CRISPR/Cas9-guided single nucleotide editing demonstrated that CAMKK1 rs7214723 T > C mutation significantly inhibits cell proliferation and migration and promotes cell apoptosis.ConclusionsCAMKK1 SNP rs7214723 may be a significant prognostic factor for the risk of death among patients with lung cancer.


Sign in / Sign up

Export Citation Format

Share Document