scholarly journals Exploring the Potential Mechanism of Chuanxiong Rhizoma Treatment for Migraine Based on Systems Pharmacology

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xianhua Wen ◽  
Yuncheng Gu ◽  
Beili Chen ◽  
Feipeng Gong ◽  
Wenting Wu ◽  
...  

Migraine is a disease whose aetiology and mechanism are not yet clear. Chuanxiong Rhizoma (CR) is employed in traditional Chinese medicine (TCM) to treat various disorders. CR is effective for migraine, but its active compounds, drug targets, and exact molecular mechanism remain unclear. In this study, we used the method of systems pharmacology to address the above issues. We first established the drug-compound-target-disease (D-C-T-D) network and protein-protein interaction (PPI) network related to the treatment of migraine with CR and then established gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results suggest that the treatment process may be related to the regulation of inflammation and neural activity. The docking results also revealed that PTGS2 and TRPV1 could directly bind to the active compounds that could regulate them. In addition, we found that CR affected 11 targets that were more highly expressed in the liver or heart but were the lowest in the whole brain. It also expounds the description of CR channel tropism in TCM theory from these angles. These findings not only indicate that CR can be developed as a potential effective drug for the treatment of migraine but also demonstrate the application of systems pharmacology in the discovery of herbal-based disease therapies.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Lanyu He ◽  
Qingqing Jiang ◽  
Hongqing Zhu ◽  
Dehua Kong ◽  
...  

Cancer has the highest mortality in humans worldwide, and the development of effective drugs remains a key issue. Traditional Chinese medicine Saussurea involucrata (SI) exhibits a series of effects, such as anti-cancer, but the action mechanisms are still unclear. Here, systems pharmacology was applied to reveal its anti-cancer mechanism. First, we screened the active compounds of SI. Then, the compound–target network, target–disease network, and target–pathway network were constructed. DAVID was applied for GOBP analysis and KEGG pathway enrichment analysis on cancer-related targets. Seven potential compounds and 187 targets were identified. The target–disease classification network showed that compounds mainly regulated proteins related to cancer, nervous system diseases, and cardiovascular system diseases. Also, SI anti-tumor effect mainly associated with the regulation of NO production, angiogenesis, MAPK, and PKB from GOBP enrichment. Additionally, KEGG pathway enrichment indicated that targets involved in anti-inflammatory action, inhibiting angiogenesis and anti-proliferation or inducing apoptosis. Experimental validation showed that four active compounds could inhibit cell proliferation and promote apoptosis in A549 (except for kaempferol), PC-3, and C6 cells. This study not only provides experimental evidence for further research on SI in cancer treatment but also promotes the development of potential drugs of SI in modern medicine.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Guosheng Xing ◽  
Yufeng Zhang ◽  
Xinlin Wu ◽  
Hua Wang ◽  
Yan Liu ◽  
...  

Objective. We analyzed the efficacy and pharmacological mechanisms of action of Zhen Ren Yang Zang decoction (ZRYZD) on ulcerative colitis (UC) using meta-analysis and network pharmacology. Methods. The major databases were searched for randomized controlled trials of ZRYZD for the treatment of UC. Meta-analysis of the efficacy of ZRYZD on UC was conducted using RevMan software. Active compounds and target genes were acquired using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. UC-related genes were searched using the GeneCards database. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using RGUI. A compound-target network was constructed using Cytoscape software, and a protein-protein interaction network was constructed using the STRING database. Molecular docking simulations of the macromolecular protein targets and their corresponding ligand compounds were performed using the AutoDock tool and AutoDock Vina software. Results. Meta-analysis revealed that the total effective rate and recovery rate of clinical efficacy were significantly higher in the experimental group than those of the control group. The screening identified 169 active compounds and 277 active target genes for ZRYZD. The 277 active target genes were compared with the 4,798 UC-related genes. This identified 187 active target genes of ZRYZD for UC that correlated with 138 active compounds. GO functional enrichment and KEGG pathway enrichment analyses were performed, and compound-target and protein-protein interaction networks were constructed. The key compounds and key target proteins were then selected. Finally, target protein binding with the corresponding compound was analyzed using molecular docking. Conclusion. Our findings demonstrate the effectiveness and safety of ZRYZD for the treatment of UC and provide insight into the underlying pharmacological mechanisms of action. Furthermore, key compounds were identified, laying the foundation for future studies on ZRYZD for the treatment of UC.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1105 ◽  
Author(s):  
Lihua Zhang ◽  
Mingchao Cui ◽  
Shaojun Chen

Peimine (also known as verticine) is the major bioactive and characterized compound of Fritillariae Thunbergii Bulbus, a traditional Chinese medicine that is most frequently used to relieve a cough. Nevertheless, its molecular targets and mechanisms of action for cough are still not clear. In the present study, potential targets of peimine for cough were identified using computational target fishing combined with manual database mining. In addition, protein-protein interaction (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using, GeneMANIA and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases respectively. Finally, an interaction network of drug-targets-pathways was constructed using Cytoscape. The results identified 23 potential targets of peimine associated with cough, and suggested that MAPK1, AKT1 and PPKCB may be important targets of pemine for the treatment of cough. The functional annotations of protein targets were related to the regulation of immunological and neurological function through specific biological processes and related pathways. A visual representation of the multiple targets and pathways that form a network underlying the systematic actions of peimine was generated. In summary, peimine is predicted to exert its systemic pharmacological effects on cough by targeting a network composed of multiple proteins and pathways.


2020 ◽  
Author(s):  
Mingjun Yang ◽  
Boni Song ◽  
Zhitong Bing ◽  
Juxiang Liu ◽  
Rui Li ◽  
...  

Abstract Background: Type 2 Diabetes Mellitus(T2DM) is an endocrine disease that caused mainly by insulin resistance (IR) and β cell dysfunction. The incidence of T2DM is quite high in the worldwide. To explore the molecular mechanism of Jinqi Jiangtang Tablet(JJT) in treating of T2DM based on Network Pharmacology. Methods: The active compounds, targets of three Traditional Chinese medicines in JJT were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database and Uniprot database; The targets of T2DM were screened through the Drugbank database; The compound-target network was constructed via the Cytoscape 3.7.2 software and used the built-in Network analyzer to analyze and select the key active compounds; The overlapping targets of drug and disease targets were gained by the VENNY online tool and the targets were built by STRING website to select the key genes; Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed on the potential targets using DAVID6.8 online tool to study the mechanism of overlapping targets. Via Systems Dock platform to validate the interaction between compound and targets Results: Twenty-five active compounds of JJT were screened, 101 drug targets, 142 disease targets and twenty-one overlapping targets. GO enrichment analysis showed that the biological processes (BP)mainly included the blood circulation ,etc. Cell composition(CC) mainly affected the integral component of plasma membrane, etc. Molecular functions(MF) mainly involved alpha-adrenergic receptor activity, etc. KEGG pathway analysis showed that there were twelve pathways related to T2DM, among which PPAR signaling pathway was related to T2DM mostly. RXRA is one of key targets of JJT and berberine performed well. Conclusions: This study revealed the mechanism of JJT in treatment of T2DM preliminarily and supplied a further foundation for studying its mechanism.


2020 ◽  
Author(s):  
Fu Jun Liao ◽  
Peng-Fei Zheng ◽  
Yao-Zong Guan ◽  
Wei Li

Abstract Background: The purpose of this study was to explore the potential molecular targets of hyperlipidaemia and the related molecular mechanisms.Methods: The microarray data set of GSE66676 obtained from patients with hyperlipidaemia was downloaded. The weighted gene co‑expression network (WGCNA) analysis was used to analyze the gene expression profile and royalblue module was considered as the highest correlation. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and genomes (KEGG) pathway enrichment analyses were implemented for the identification of genes in the royalblue module using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http://david.abcc.ncifcrf.gov). A protein-protein interaction (PPI) network was established by using the online STRING tool. Then, several hub genes were identified by the MCODE and cytoHubba plug-ins in Cytoscape software.Results: The significant module (royalblue) identified was associated with TC, TG and Non-HDL-C. GO and KEGG enrichment analyses revealed that the genes in the royalblue module were associated with carbon metabolism, steroid biosynthesis, fatty acid metabolism and biosynthesis of unsaturated fatty acids pathways. SQLE (degree = 17) was revealed as key molecules that associated with hypercholesterolemia (HCH) and SCD was revealed as key molecules that associated with hypertriglyceridemia (HTG). Meanwhile, RT-qPCR analysis also confirmed the above results based on our HCH/HTG samples.Conclusions: SQLE and SCD are related to hyperlipidaemia, SQLE/SCD may be new targets for cholesterol-lowering or triglyceride-lowering therapy, respectively.


Author(s):  
Tucheng Huang ◽  
Kangjie Wang ◽  
Yuewei Li ◽  
Yanchen Ye ◽  
Yangxin Chen ◽  
...  

Atheroclerosis refers to a chronic inflammatory disease featured by the accumulation of fibrofatty lesions in the intima of arteries. Cardiovasular events associated with atherosclerosis remain the major causes of mortality worldwide. Recent studies have indicated that ferroptosis, a novel programmed cell death, might participate in the process of atherosclerosis. However, the ferroptosis landscape is still not clear. In this study, 59 genes associated with ferroptosis were ultimately identified in atherosclerosis in the intima. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for functional annotation. Through the construction of protein–protein interaction (PPI) network, five hub genes (TP53, MAPK1, STAT3, HMOX1, and PTGS2) were then validated histologically. The competing endogenous RNA (ceRNA) network of hub genes was ultimately constructed to explore the regulatory mechanism between lncRNAs, miRNAs, and hub genes. The findings provide more insights into the ferroptosis landscape and, potentially, the therapeutic targets of atherosclerosis.


2021 ◽  
Author(s):  
Hu Junrui ◽  
Duan Yongqiang ◽  
Cui Gongning ◽  
Luo Qiang ◽  
Xi Shanshan ◽  
...  

AbstractTo investigate the mechanisms and active components governing the anticancer activity of rhubarb.The TCMSP database was screened to identify the active components of rhubarb and Swiss target predictions were generated to predict their cellular targets. TTD and OMIM databases were used to predict tumor-related target genes. "Cytoscape" was used to construct drug targets. PPI network analysis, GO enrichment analysis and KEGG pathway analysis of the key targets were investigated using String and David databases. A total of 33 components and 116 corresponding targets were screened. Amongst them, the key active compounds in rhubarb included emodin, aloe emodin, β-sitosterol, emodin methyl ether and rhein, which were predicted to target TP53, AKT1, STAT3, PIK3CA, HRAS, and VEGFA. GO analysis revealed that the cellular targets clustered into 159 biological processes, including those involved in cellular composition (n=24) and molecular functions (n=42, P<0.01). KEGG pathway analysis revealed 85 (P < 0.01) pathways related to cancer. The active compounds in rhubarb target TP53, AKT1 and PIK3CA. Rhubarb therefore regulates cancer development through an array of biological pathways.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Anbang Wang ◽  
Ming Chen ◽  
Hui Wang ◽  
Jinming Huang ◽  
Yi Bao ◽  
...  

Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system. The study aimed to identify genetic characteristics and reveal the underlying mechanisms in RCC. GSE53757, GSE46699, and TCGA KIRC database (n = 897) were analyzed to screen differentially expressed genes (DEGs) in RCC. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, followed by the analysis of the protein-protein interaction (PPI) network of the DEGs by Cytoscape software. In all, 834 DEGs were identified in RCC, including 416 upregulated genes and 418 downregulated genes. The top 10 hub genes, VEGFA, EGFR, EGF, CD44, CD86, FN1, ITGAM, ITGB2, TLR2, and PTPRC, were identified from the PPI network according to the core degree. The following subnetwork revealed that these significant modules were enriched in positive regulation of response to external stimulus, regulation of leukocyte-mediated immunity, and regulation of exocytosis. The expressions of these hub genes were also validated using qRT-PCR and IHC in Changzheng RCC database (n = 160). We especially found that half of the top ten hub genes were cell adhesion-related molecules, which were associated with RCC progression and poor prognosis. In conclusion, these hub genes, particularly cell adhesion-related molecules, could be used as prognostic biomarkers and potential therapeutic targets for RCC.


2021 ◽  
Author(s):  
qiaoxin xu ◽  
Xiaojia Wang ◽  
Ning Zhong ◽  
Yue Wang ◽  
Zhong Li ◽  
...  

Abstract Background: Bacillary dysentery (BD) is one of the most common epidemic infectious diseases. Hundreds of millions of people are infected with BD each year among the world. The patients usually have the following symptoms: abdominal pain, diarrhea, intestinal flora imbalance, etc. Antibiotic are widely used for the treatment in clinical practice. However, due to the overuse of antibiotics, the bacterial resistance is increasingly serious and the medical works are facing with the risk that the antibiotics would lose efficacy. Apart from chemical medicines, traditional Chinese medicines (TCM) are also well accepted for BD treatment, especially in Asian countries. Huanglian-Huangqin-Huangbo herb pair (HHH) is typical and commonly used to treat symptoms such as abdominal pain, diarrhea, and intestinal flora imbalance caused by BD. Also, the HHH has antibacterial, anti-inflammatory, and antidiarrheal effects. In this study, we are committed to ascertain the potential active compounds of HHH and the onset mechanism for the treatment of BD.Methods With the help of the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (Traditional Chinese Medicine Systems Pharmacology Database, TCMSP) and PubChem database to search and screen the chemical components and targets of Coptis, Scutellaria, Phellodendron, the gene names were corrected through the Uniprot database, and used the CTD database, TTD database, GeneCards database and DRUGBANK database to obtain BD-related disease targets. The online drawing platform Bioinformatics was used to analyze the "active compound-disease" intersection target, and utilized Cyoscape 3.7.2 software to construct a visualized Chinese medicine-active compound-target network and protein interaction network in order to screen the potential key active compounds and key targets; GO function analysis and KEGG pathway enrichment analysis of the target were carried out through the Metascape database platform, and Cyoscape 3.7.2 software was used to construct a gene-pathway network to screen potential pathways and their mechanism of action. Molecular docking of the key active compounds of the HHH with the key target of BD. Results A total of 331 potential active compounds were screened for the HHH, among which 87 key active compounds such as quercetin, wogonin, baicalein, β-sitosterol, isofumarine, and tetrahydroberberine can be selected. Act on BD through 34 potential intersection targets such as IL-6, AKT1, PTGS2, TNF, CASP3, VEGFA, etc. GO gene function analysis yielded a total of 20 biological process (BP) items, 7 cell composition (CC) items, and molecular function (MF) items (P<0.01), mainly involving lipopolysaccharide reaction, reactive oxygen metabolism process, cell factor receptor binding, inorganic substance response, membrane raft, cytokine receptor binding and other biological processes. KEGG pathway enrichment analysis identified 14 signaling pathways (P<0.01), mainly related to cancer signaling pathways, IL-17 signaling pathways and other key pathways. The results of molecular docking HHH owed that the core active components such as quercetin, β-sitosterol, wogonin, isofumarole, baicalein and other core active compounds have good binding effects with the core targets of TNF, IL-6, PTGS2, and BCL2 (binding energy <-5 KJ/mol). Conclusion The effect of HHH on the potential key targets of TNF, IL-6, PTGS2 and other potential key targets through quercetin, β-sitosterol and other potential active compounds to regulate IL-17 and other signaling pathways, thereby exerting therapeutic effects on bacteria. The effect of dysentery is in line with the remarkable characteristics of multi-component, multi-target, and multi-channel effect of Chinese medicine compound.


2020 ◽  
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
De Jin ◽  
Li Wang ◽  
Cheng Tang ◽  
...  

Abstract Background: Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Milkvetch Root has been extensively used to treat DN in clinical practice in China for many years, but the active ingredients, drug targets, and its exact molecular mechanism are not known. The aim of this study was to decrypt the underlying mechanisms of Milkvetch Root in the treatment of DN by using a systems pharmacology approach. Methods: The components and targets of Milkvetch Root were analyzed using the Traditional Chinese Medicine Systems Pharmacology database. Then we found the common target of Milkvetch Root and disease, constructed a protein-protein interaction (PPI) network using String, and screened the key targets from these common targets through topological analysis. Analyses of enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Subsequently, the major hubs were imported to the Database for Annotation, Visualization and Integrated Discovery to perform a pathway enrichment analysis. Results: There were 20 active compounds of Milkvetch Root and 10 diabetic nephropathy -associated targets (AKT1, VEGFA, IL6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, SLC2A4) that were obtained. Then, the results of GO and KEGG pathway enrichment analyses suggested that the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway in diabetic complications might serve as the key points and principal pathways for DN treatment. Conclusions: In brief, Milkvetch Root has multiple components, multiple targets and multiple pharmacological effects in the treatment of DN, which provides clues for further research on DN.


Sign in / Sign up

Export Citation Format

Share Document