scholarly journals miR-20a Overexpression in Adipose-Derived Mesenchymal Stem Cells Promotes Therapeutic Efficacy in Murine Lupus Nephritis by Regulating Autophagy

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shanshan Wei ◽  
Zhiwen Zhang ◽  
Lu Yan ◽  
Yinjuan Mo ◽  
Xianwen Qiu ◽  
...  

Objective. Lupus nephritis is the most common and severe complication of systemic lupus erythematosus. The aim of our study was to investigate the efficacy of miR-20a overexpressing adipose-derived stem cell (ADSC) transplantation in murine lupus nephritis (LN) and explore potential molecular mechanisms. Methods. Mouse ADSCs were transfected with a miR-20a lentiviral vector to obtain miR-20a overexpression ADSCs (miR-20a-ADSCs). We first observed the influence of miR-20a on ADSC viability and apoptosis in vitro. B6.MRL/lpr mice were administered ADSC/miR-20a-ADSC intravenously every week from age 30 to 33 weeks, and the lupus and normal control groups received PBS on the same schedule. Results. miR-20a expression increased in miR-20a-ADSC-derived exosomes, and miR-20a overexpression promoted ADSC proliferation and inhibited apoptosis. Compared with ADSCs, miR-20a-ADSC treatment significantly improved serologic and histologic abnormalities, as evidenced by reduced serum creatinine, anti-dsDNA antibody, 24 h urine protein levels, nephritis scores, and C3/IgG deposits. Furthermore, miR-20a-ADSC treatment resulted in downregulated Akt, mTOR, and p62 expression and upregulated miR-20a, Beclin 1, and LC3 II/I expression compared with ADSC treatment. After treatment with miR-20a-ADSC, a significant increase in the number of autophagosomes within podocytes was observed, along with upregulated expression of podocin and nephrin, compared with the ADSC group. Conclusions. miR-20a-ADSC transplantation prevents the development of lupus nephritis and significantly ameliorates already-established disease, and its mechanism is related to autophagy by targeting the miR-20a-regulated mTOR pathway.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoqing Zhou ◽  
Huanpeng Chen ◽  
Fengjiao Wei ◽  
Qingyu Zhao ◽  
Qiao Su ◽  
...  

Th17 activity has been implicated in systemic lupus erythematosus (SLE), which is a systemic autoimmune disease with a typical clinical manifestation of lupus nephritis (LN). Retinoic acid receptor-related orphan receptor gamma t (RORγt) has been shown to be important for Th17 differentiation. In this study, we evaluated the inhibition of RORγt activity by 3β-acetyloxy-oleanolic acid (AOA), a small molecule isolated from the root of Symplocos laurina, a traditional herb belonging to South China. We demonstrated that AOA can inhibit RORγt activity and prevent SLE pathogenesis in a pristane-induced LN model. The results showed that AOA decreased RORγt transcription activity in a reporter assay and prevented Th17 differentiation in vitro. In vivo studies showed that AOA treatment decreased serum anti-dsDNA antibody and alleviated renal pathologic damage as well as antibody complex accumulation in the pristane-induced LN model. These results demonstrated that AOA can improve the clinical manifestation of LN, indicating potential application in SLE therapy.


2020 ◽  
Vol 117 (26) ◽  
pp. 15160-15171 ◽  
Author(s):  
Chenzhi Jing ◽  
Tomas Castro-Dopico ◽  
Nathan Richoz ◽  
Zewen K. Tuong ◽  
John R. Ferdinand ◽  
...  

IgG antibodies cause inflammation and organ damage in autoimmune diseases such as systemic lupus erythematosus (SLE). We investigated the metabolic profile of macrophages isolated from inflamed tissues in immune complex (IC)-associated diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor cross-linking. We found that human and mouse macrophages undergo a switch to glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic changes in inflamed tissue in vivo. This metabolic reprogramming was required to generate a number of proinflammatory mediators, including IL-1β, and was dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led to a reduction in kidney macrophage IL-1β and reduced neutrophil recruitment in a murine model of antibody-mediated nephritis. Together, our data reveal the molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in macrophages and suggest a therapeutic strategy for autoantibody-induced inflammation, including lupus nephritis.


2020 ◽  
Author(s):  
Jing Huang ◽  
Bomiao Ju ◽  
Qi An ◽  
Jing Zhang ◽  
Ping Fan ◽  
...  

Abstract Rationale: Lupus nephritis (LN) is a major risk factor for morbidity and mortality in systemic lupus erythematosus patients, and lupus nephritis treatment is limited to immunosuppressive therapy with many problems. Vitamin D receptor (VDR) can regulate NLRP3 inflammasome which plays critical roles in LN pathogenesis. Objectives: This study was designed to explore the therapeutic effect of VDR agonist on LN and its potential mechanisms, aiming to elucidatethe optimal therapy for LN.Findings: In vivo, treatment of MRL/lpr mice since 8 weeks of age with VDR agonist paricalcitol for 8 weeks decreased disease pathogenesis of LN with markedly improved renal pathological changes, decreased urine protein and serum anti-ds-DNA antibody level in a time-depended manner. In MRL/lpr mice of 16 weeks of age with LN, the expression of NLRP3/caspase-1/IL-1β/IL-18 axis was upregulated detecteded by ELISA, RT-PCR, western blot and immunohistochemistry, while when treated with VDR agonist paricalcitol, expression of this axis was decreased significantly. Further, it is proved that VDR agonist paricalcitol modulated NLRP3/caspase-1/IL-1β/IL-18 axis via inhibiting NF-κB, in addition, co-immunoprecipitation results showed that VDR agonist suppressed NF-κB nuclear translocation by competitively binding with importin 4. In vitro, anti-dsDNA antibody induced apoptosis and upregulation of NF-κB/NLRP3/caspase-1/IL-1β/IL-18 axis in mRTECs, which could be reversed by VDR agonist paricalcitol.Conclusions: Vitamin D receptor agonist may be a promising novel therapeutic strategy for patients with lupus nephritis, which paves the way for future preclinical/clinical studies.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chun-Ling Liang ◽  
Hongliang Jiang ◽  
Wenxuan Feng ◽  
Huazhen Liu ◽  
Ling Han ◽  
...  

Macrophages, a major subset of innate immune cells, are main infiltrating cells in the kidney in lupus nephritis. Macrophages with different phenotypes exert diverse or even opposite effects on the development of lupus nephritis. Substantial evidence has shown that macrophage M2 polarization is beneficial to individuals with chronic kidney disease. Further, it has been reported that PD-1 ligands (PD-Ls) contribute to M2 polarization of macrophages and their immunosuppressive effects. Total glucosides of paeony (TGP), originally extracted from Radix Paeoniae Alba, has been approved in China to treat some autoimmune diseases. Here, we investigated the potentially therapeutic effects of TGP on lupus nephritis in a pristane-induced murine model and explored the molecular mechanisms regulating macrophage phenotypes. We found that TGP treatment significantly improved renal function by decreasing the urinary protein and serum creatinine, reducing serum anti-ds-DNA level and ameliorating renal immunopathology. TGP increased the frequency of splenic and peritoneal F4/80+CD11b+CD206+ M2-like macrophages with no any significant effect on F4/80+CD11b+CD86+ M1-like macrophages. Immunofluorescence double-stainings of the renal tissue showed that TGP treatment increased the frequency of F4/80+Arg1+ subset while decreasing the percentage of F4/80+iNOS+ subset. Importantly, TGP treatment increased the percentage of both F4/80+CD11b+PD-L1+ and F4/80+CD11b+PD-L2+ subsets in spleen and peritoneal lavage fluid as well as the kidney. Furthermore, TGP augmented the expressions of CD206, PD-L2 and phosphorylated STAT6 in IL-4-treated Raw264.7 macrophages in vitro while its effects on PD-L2 were abolished by pretreatment of the cells with an inhibitor of STAT6, AS1517499. However, TGP treatment did not affect the expressions of STAT1 and PD-L1 in Raw264.7 macrophages treated with LPS/IFN-γ in vitro, indicating a possibly indirect effect of TGP on PD-L1 expression on macrophages in vivo. Thus, for the first time, we demonstrated that TGP may be a potent drug to treat lupus nephritis by inducing F4/80+CD11b+CD206+ and F4/80+CD11b+PD-L2+ macrophages through IL-4/STAT6/PD-L2 signaling pathway.


Lupus ◽  
2019 ◽  
Vol 28 (12) ◽  
pp. 1387-1396 ◽  
Author(s):  
W Yuan ◽  
H Cao ◽  
P Wan ◽  
R Shi ◽  
S Zhou ◽  
...  

Background This study evaluated the diagnostic performances of total and high-avidity (HA) anti-dsDNA enzyme immunoassays (EIA) in Chinese systemic lupus erythematosus (SLE) patients. Methods A total of 410 serum samples from 217 SLE patients, 54 patients with other systemic autoimmune diseases, and 139 healthy subjects were tested on total and HA anti-dsDNA EIA, as well as three commercial in vitro diagnostic kits: BioPlex 2200 ANA Screen, Kallestad anti-dsDNA EIA, and Crithidia Lucilae IFA. The disease activities of SLE patients were assessed using the modified SLE Disease Activity Index. The diagnostic performances of each assay were analyzed using Analyse-it software. Results The diagnostic performances of the total and HA anti-dsDNA EIA kits were comparable to other commercially available in vitro diagnostic assays. Receiver operating characteristic curve analysis demonstrated an area under the curve ranging from 0.85 to 0.89, with the total anti-dsDNA kit demonstrating the highest sensitivity and the HA kit showing higher specificity. An overall agreement of >90% was observed between the total and HA anti-dsDNA EIA kits and commercially available quantitative anti-dsDNA kits. The ratio of HA to total anti-dsDNA antibody was significantly higher among SLE patients with active disease status and/or kidney damage. All assays exhibited a significant correlation with disease activity and multiple clinical manifestations. Conclusions While the clinical performances of various anti-dsDNA assays showed adequate agreements, the BioPlex 2200 anti-dsDNA assay demonstrated the highest positive likelihood ratio and odds ratio. The HA anti-dsDNA EIA kit in association with the total anti-dsDNA kit provided superior performance in SLE diagnosis and monitoring disease activity.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Guochao Sun ◽  
Ying Lu ◽  
Yingxia Li ◽  
Jun Mao ◽  
Jun Zhang ◽  
...  

miRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischemic injury and identified the potential molecular mechanisms involved. Using the H/R model of rat cardiomyocytes H9C2 in vitro, we found that miR-19a was in low expression in H9C2 cells after H/R treatment and H/R dramatically decreased cardiomyocyte viability, and increased lactate dehydrogenase (LDH) release and cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-19a mimic. Dual-luciferase reporter assay and Western blotting assay revealed that PTEN was a direct target gene of miR-19a, and miR-19a suppressed the expression of PTEN via binding to its 3′-UTR. We further identified that overexpression of miR-19a inhibited the expression of PTEN at the mRNA and protein levels. Moreover, PTEN was highly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the increase in PTEN expression. Importantly, miR-19a mimic significantly increased p-Akt levels under H/R. In conclusion, our findings indicate that miR-19a could protect against H/R-induced cardiomyocyte apoptosis by inhibiting PTEN /PI3K/p-Akt signaling pathway.


2020 ◽  
Vol 318 (5) ◽  
pp. F1258-F1270 ◽  
Author(s):  
Li Xiang ◽  
An Liu ◽  
Guoshuang Xu

B lymphocyte hyperactivity plays a pathogenic role in systemic lupus erythematosus (SLE), and spliced X box-binding protein 1 (XBP1s) has been implicated in B cell maturation and differentiation. We hypothesized that blockade of the XBP1s pathway inhibits the B cell hyperactivity underlying SLE and lupus nephritis (LN) development. In the present study, we systematically evaluated the changes in B cell activation induced by the Xbp1 splicing inhibitor STF083010 in a pristane-induced lupus mouse model. The lupus mouse model was successfully established, as indicated by the presence of LN with markedly increased urine protein levels, renal deposition of Ig, and mesangial cell proliferation. In lupus mice, B cell hyperactivity was confirmed by increased CD40 and B cell-activating factor levels. B cell activation and plasma cell overproduction were determined by increases in CD40-positive and CD138-positive cells in the spleens of lupus mice by flow cytometry and further confirmed by CD45R and Ig light chain staining in the splenic tissues of lupus mice. mRNA and protein expression of XBP1s in B cells was assessed by real-time PCR, Western blot analysis, and immunofluorescence analysis and was increased in lupus mice. In addition, almost all changes were reversed by STF083010 treatment. However, the expression of XBP1s in the kidneys did not change when mice were exposed to pristane and STF083010. Taken together, these findings suggest that expression of XBP1s in B cells plays key roles in SLE and LN development. Blockade of the XBP1s pathway may be a potential strategy for SLE and LN treatment.


2020 ◽  
Vol 21 (4) ◽  
pp. 1372 ◽  
Author(s):  
Eloi Garcia-Vives ◽  
Cristina Solé ◽  
Teresa Moliné ◽  
Marta Vidal ◽  
Irene Agraz ◽  
...  

Data on exosomal-derived urinary miRNAs have identified several miRNAs associated with disease activity and fibrosis formation, but studies on prognosis are lacking. We conducted a qPCR array screening on urinary exosomes from 14 patients with biopsy-proven proliferative lupus glomerulonephritis with a renal outcome of clinical response (n = 7) and non-response (n = 7) following therapy. Validation studies were performed by qRT-PCR in a new lupus nephritis (LN) cohort (responders = 22 and non-responders = 21). Responder patients expressed significantly increased levels of miR-31, miR-107, and miR-135b-5p in urine and renal tissue compared to non-responders. MiR-135b exhibited the best predictive value to discriminate responder patients (area under the curve = 0.783). In vitro studies showed exosome-derived miR-31, miR-107, and miR-135b-5p expression to be mainly produced by tubular renal cells stimulated with inflammatory cytokines (e.g IL1, TNFα, IFNα and IL6). Uptake of urinary exosomes from responders by mesangial cells was superior compared to that from non-responders (90% vs. 50%, p < 0.0001). HIF1A was identified as a potential common target, and low protein levels were found in non-responder renal biopsies. HIF1A inhibition reduced mesangial proliferation and IL-8, CCL2, CCL3, and CXCL1 mesangial cell production and IL-6/VCAM-1 in endothelial cells. Urinary exosomal miR-135b-5p, miR-107, and miR-31 are promising novel markers for clinical outcomes, regulating LN renal recovery by HIF1A inhibition.


Sign in / Sign up

Export Citation Format

Share Document