scholarly journals The Effect and Mechanism of lncRNA NR2F1-As1/miR-493-5p/MAP3K2 Axis in the Progression of Gastric Cancer

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaobin Liao ◽  
Linbao Wen ◽  
Liqiong Luo

Background. LncRNA NR2F1-AS1 has been identified as an oncogene in some human tumors, such as breast cancer, nonsmall cell lung cancer, and esophageal squamous cell carcinoma. Nonetheless, whether NR2F1-AS1 is involved in the progression of gastric cancer (GC) remains unknown. Methods. The expression patterns of NR2F1-AS1, MAP3K2, and miR-493-5p in GC tissues and cells were detected by RT-qPCR. The protein expression of MAP3K2 was assessed by the Western blotting assay. The MTT assay and flow cytometry were performed to measure cell proliferation and cell apoptosis in GC cells. The transwell assay was adopted to assess cell migration in GC cells. The relationship between NR2F1-AS1, MAP3K2, and miR-493-5p was verified by a dual-luciferase reporter assay. Results. The increased NR2F1-AS1 and MAP3K2 expressions were discovered in GC tissues and cells compared with control groups. Knockdown of NR2F1-AS1 and MAP3K2 dramatically suppressed cell proliferation and migration, while it enhanced cell apoptosis in GC cells. In addition, NR2F1-AS1 was found to be a sponge of miR-493-5p, and MAP3K2 was a downstream gene of miR-493-5p. Moreover, the expression of MAP3K2 was notably reduced by miR-493-5p, and NR2F1-AS1 counteracted the inhibition of miR-493-5p. Conclusion. Thus, NR2F1-AS1 was verified to regulate GC cell progression by sponging miR-493-5p to upregulate MAP3K2 expression.

2021 ◽  
Vol 53 (4) ◽  
pp. 454-462
Author(s):  
Ting Li ◽  
Xiaomin Zuo ◽  
Xiangling Meng

Abstract Circular RNAs (circRNAs) play either oncogenic or tumor suppressive roles in gastric cancer (GC). A previous study demonstrated that circ_002059, a typical circRNA, was downregulated in GC tissues. However, the role and mechanism of circ_002059 in GC development are still unknown. In this study, the levels of circ_002059, miR-182, and metastasis suppressor-1 (MTSS1) were examined by real-time quantitative polymerase chain reaction and western blot analysis. Cell proliferation and migration were evaluated by MTT assay and Transwell migration assay, respectively. The interactions between miR-182 and circ_002059 or MTSS1 were analyzed by dual-luciferase reporter assay. A GC xenograft model was established to validate the role of circ_002059 in GC progression in vivo. Overexpression of circ_002059 significantly inhibited, whereas knockdown of circ_002059 notably facilitated, cell proliferation and migration in GC cells. MTSS1 was found to be a direct target of miR-182 and circ_002059 upregulated MTSS1 expression by competitively sponging miR-182. Transfection with miR-182 mimic and MTSS1 silencing abated the inhibitory effect of circ_002059 on GC progression. Circ_002059 inhibited GC cell xenograft tumor growth by regulating miR-182 and MTSS1 expression. Collectively, Circ_002059 inhibited GC cell proliferation and migration in vitro and xenograft tumor growth in mice, by regulating the miR-182/MTSS1 axis.


2021 ◽  
Vol 16 (1) ◽  
pp. 266-276
Author(s):  
Zhenfen Wang ◽  
Qing Liu ◽  
Ping Huang ◽  
Guohao Cai

Abstract Gastric cancer (GC) is ranked the fourth leading cause of cancer-related death, with an over 75% mortality rate worldwide. In recent years, miR-299-3p has been identified as a biomarker in multiple cancers, such as acute promyelocytic leukemia, thyroid cancer, and lung cancer. However, the regulatory mechanism of miR-299-3p in GC cell progression is still largely unclear. Cell viability and apoptosis tests were performed by CCK8 and flow cytometry assay, respectively. Transwell assay was recruited to examine cell invasion ability. The interaction between miR-299-3p and PAX3 was determined by the luciferase reporter system. PAX3 protein level was evaluated by western blot assay. The expression of miR-299-3p was downregulated in GC tissues and cell lines (MKN-45, AGS, and MGC-803) compared with the normal tissues and cells. Besides, overexpression of miR-299-3p significantly suppressed proliferation and invasion and promoted apoptosis in GC. Next, we clarified that PAX3 expression was regulated by miR-299-3p using a luciferase reporter system, qRT-PCR, and western blot assay. Additionally, downregulation of PAX3 repressed GC cell progression. The rescue experiments indicated that restoration of PAX3 inversed miR-299-3p-mediated inhibition on cell proliferation and invasion. miR-299-3p suppresses cell proliferation and invasion as well as induces apoptosis by regulating PAX3 expression in GC, representing desirable biomarkers for GC diagnosis and therapy.


2016 ◽  
Vol 40 (6) ◽  
pp. 1303-1315 ◽  
Author(s):  
Shuang Li ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Xinyi Wang ◽  
Rui Liu ◽  
...  

Background: MicroRNAs (miRNAs) have been demonstrated to play a crucial role in tumorigenesis. Previous studies have shown that miR-520b/e acts as a tumor suppressor in several tumors. Other studies indicated that epidermal growth factor receptor (EGFR) is highly expressed in many tumors, and involved in the development of tumors, such as cell proliferation, migration, angiogenesis and apoptosis. However, the correlation of miRNAs and EGFR in gastric cancer (GC) has not been adequately investigated. Our aim was to explore the relationship. Methods: The expression levels of EGFR and miR-520b/e were examined by RT-PCR and Western blot. We also investigated the relationship between EGFR and miR-520b/e in GC cell lines by relevant experiments. Results: In this study, we found that miR-520b/e inhibits the protein expression of EGFR by directly binding with the 3'-untranslated region (3'-UTR). And it was shown that the down-regulation of miR-520b/e promotes cell proliferation and migration by negative regulation of the EGFR pathway, while over-expression of miR-520b/e inhibits these properties. In addition, the biological function of EGFR in GC cell lines was validated by silencing and over-expression assays respectively. Conclusions: Taken together, our results demonstrate that miR-520b/e acts as a tumor suppressor by regulating EGFR in GC, and provide a novel marker and insight for the potential therapeutic target of GC.


2020 ◽  
Author(s):  
Hou Wei ◽  
Lu Xu ◽  
Tao Su ◽  
Yunxiao Wu ◽  
Yujuan Liu ◽  
...  

Abstract Background: This study aims at verifying the effect of non-coding RNA SNHG16 on promotes NPC cell progression via binding miR-23b-3p.Methods: The expression of non-coding RNA SNHG16 was detected by qRT-PCR in cell lines including c666-1 and HONE-1. Si-MCM6 and si-SNHG16 are transfected to cells to verify their effects on cell proliferation and apoptosis. MTT is used to measure cell viability while flow cytometry assay and transwell assay were used for cell apoptosis, cell cycle and invasion respectively. The expression level of MCM6 was determined by western blot. Relationships between mRNA MCM6 and lncRNA SNHG16 were explored by qRT-PCR and nude mouse tumorigenicity assay.Results: The MCM6 was overexpressed in NPC tissues and lncRNA SNHG16 showed the same trend. Those two factors were correlated with high cancer stage. The expression of MCM6 was decreased after si-SNHG16 and dual luciferase reporter system demonstrated their combine with miR-23b-3p. Further we explored the down-regulation of lncRNA SNHG16 could inhibit NPC cell proliferation, colony formation and also accelerate cell apoptosis rate. And this result could be altered by adding miR-23b-3p inhibitor.Conclusion: The lncRNA SNHG16 is able to promote the NPC proliferation via binding miR-23b-3p, which has potential for future treatment.


2019 ◽  
Vol 34 (4) ◽  
pp. 364-372 ◽  
Author(s):  
Zhigang Liu ◽  
Yun Lü ◽  
Qiuyu Jiang ◽  
Yang Yang ◽  
Chengxue Dang ◽  
...  

Purpose: miR-491 functions as a tumor suppressor in several types of cancer. However, its function and mechanism in gastric cancer proliferation and metastasis have not been well defined. The aim of this study was to explore the role and regulatory mechanism of miR-491 in cell proliferation and migration in gastric cancer. Methods: Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the expression pattern of miR-491 in gastric cancer tissues. miR-491 overexpression vector, miR-491 inhibitor, and siHMGA2 were used; and MTT, wound healing, and transwell assays were employed to examine proliferation and migration for BGC-823 cells. A dual-luciferase reporter gene was used to measure the target relationship between miR-491 and HMGA2. Results: Most gastric cancer patients exhibit decreased miR-491 expression. miR-491 overexpression inhibited cell proliferation and migration, whereas miR-491 inhibitor treatment produced the opposite effect. Mechanistically, HMGA2 was identified as a direct target of miR-491. Moreover, HMGA2 knockdown inhibited cell proliferation and migration, which was similar to the effect of miR-491 overexpression. HMGA2 was decreased after transfection of the miR-491 vector and increased after transfection of the miR-491 inhibitor. Conclusion: Our results suggest that miR-491 suppressed cell proliferation and cell motility in gastric cancer by targeting HMGA2. Silencing HMGA2 produced a similar effect to miR-491 overexpression on cell proliferation and migration. miR-491/HMGA2 signaling may be a potential therapeutic target for gastric cancer patients with decreased miR-491 expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanping Dai ◽  
Xiaoqin Gao

Abstract Background Emerging evidence continues to highlight the significant role of microRNAs (miRNAs) in the regulation of cancer growth and metastasis. Herein, the current study aimed to elucidate the role of exosomal miR-183 in prostate cancer development. Methods Initially, public microarray-based gene expression profiling of prostate cancer was employed to identify differentially expressed miRNAs. The putative target gene TPM1 of miR-183 was subsequently predicted, followed by the application of a luciferase reporter assay and examination of the expression patterns in prostate cancer patients and cell lines. The effects of miR-183 and TPM1 on processes such as cell proliferation, invasion and migration were evaluated using in vitro gain- and loss-of-function experiments. The effect of PC3 cells-derived exosomal miR-183 was validated in LNCaP cells. In vivo experiments were also performed to examine the effect of miR-183 on prostate tumor growth. Results High expression of miR-183 accompanied with low expression of TPM1 was detected in prostate cancer. Our data indicated that miR-183 could target and downregulate TPM1, with the overexpression of miR-183 and exosomal miR-183 found to promote cell proliferation, migration, and invasion in prostate cancer. Furthermore, the tumor-promoting effect of exosome-mediated delivery of miR-183 was subsequently confirmed in a tumor xenograft model. Conclusions Taken together, the key findings of our study demonstrate that prostate cancer cell-derived exosomal miR-183 enhance prostate cancer cell proliferation, invasion and migration via the downregulation of TPM1, highlighting a promising therapeutic target against prostate cancer.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Wencong Sun ◽  
Detao Yin

AbstractLong noncoding RNAs (lncRNAs) play an essential role in the progression of papillary thyroid cancer (PTC). However, the expression and function of lncRNA cancer susceptibility candidate 7 (CASC7) in PTC remain unknown. The purpose of this study was to investigate the role and molecular mechanism of CASC7 in regulating PTC cell behavior. The expression of CASC7, miR-34a-5p, and tumor protein P73 (TP73) was determined by qRT-PCR and western blot. Cell proliferation was examined by MTT assay. Cell apoptosis was assessed by flow cytometry following Annexin V and PI staining. Cell migration was determined by Transwell migration assay. The interaction between miR-34a-5p and CASC7 or TP73 was examined by luciferase reporter assay. CASC7 and TP73 expression were significantly lower, whereas miR-34a-5p expression was higher in PTC tissues than the adjacent normal tissues. Furthermore, CASC7 overexpression inhibited cell proliferation and migration, whereas facilitated cell apoptosis in human PTC cell lines (K1 and TPC-1). Mechanistically, CASC7 acted as a sponge of miR-34a-5p to upregulate TP73 expression. Moreover, miR-34a-5p mimic transfection could abate the CASC7-regulated PTC cell proliferation, migration, and apoptosis. Collectively, CASC7 inhibited the proliferation and migration of PTC cells by sponging miR-34a-5p to upregulate TP73 expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tengkai Wang ◽  
Rui Ji ◽  
Guanqun Liu ◽  
Beilei Ma ◽  
Zehua Wang ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most common malignancies, molecular mechanism of which is still not clear. Aberrant expression of tumor-associated genes is the major cause of tumorigenesis. DBF4 is an important factor in cancers, although there is yet no report on its function and molecular mechanism in GC. Methods The expression of DBF4 in tumor tissues or cells of GC was detected by qRT-PCR and western blotting. Gastric cancer cell line MGC-803 and AGS were transfected with DBF4 siRNA or overexpression vector to detect the function of DBF4 in proliferation, migration and the sensitivity to 5-Fu with CCK-8 assay, colony formation assay, transwell assay, and wound healing assay. miR-30a was found to be the regulator of DBF4 by online bioinformatics software and confirmed with qRT-PCR, western blot and dual-luciferase reporter assays. Results In our study, increased expression of DBF4 in GC tissues was first identified through The Cancer Genome Atlas (TCGA) and later confirmed using specimens from GC patients. Furthermore, functional experiments were applied to demonstrate that DBF4 promotes cell proliferation and migration in GC cell lines, moreover weakens the sensitivity of MGC803 and AGS cells to 5-Fu. We further demonstrated that miR-30a showed significantly lower expression in GC cells and inhibited the expression of DBF4 through 3ʹ-UTR suppression. Furthermore, rescue experiments revealed that the miR-30a-DBF4 axis regulated the GC cell proliferation, migration and the sensitivity to 5-Fu. The important composition in tumor microenvironment, lactate, may be the primary factor that suppressed miR-30a to strengthen the expression of DBF4. Conclusions Taken together, our study was the first to identify DBF4 as a regulator of cell proliferation and migration in GC. Furthermore, our study identified the lactate-miR-30a-DBF4 axis as a crucial regulator of tumor progression and the tumor sensitivity to 5-Fu, which maybe serve useful for the development of novel therapeutic targets.


2021 ◽  
Author(s):  
Tengkai Wang ◽  
Rui Ji ◽  
Guanqun Liu ◽  
Beilei Ma ◽  
ZEHUA WANG ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, molecular mechanism of which is still not clear. Aberrant expression of tumor-associated genes is the major cause of tumorigenesis. DBF4 is an important factor in cancers, although there is yet no report on its function and molecular mechanism in GC.Methods: The expression of DBF4 in tumor tissues or cells of GC was detected by RT-PCR and western blotting. Gastric cancer cell line MGC-803 and AGS were transfected with DBF4 siRNA or overexpression vector to detect the function of DBF4 in proliferation and migration with CCK-8 assay, colony formation assay, transwell assay and wound healing assay. miR-30a was found to be the regulator of DBF4 by online bioinformatics software and confirmed with RT-PCR, western blot and dual-luciferase reporter assays.Results: In our study, increased expression of DBF4 in GC tissues was first identified through The Cancer Genome Atlas (TCGA) and later confirmed using specimens from GC patients. Furthermore, functional experiments were applied to demonstrate that DBF4 promotes cell proliferation and migration in GC cell lines, moreover weakens the sensitivity of MGC803 and AGS cells to 5-Fu. We further demonstrated that miR-30a showed significantly lower expression in GC cells and inhibited the expression of DBF4 through 3ʹ-UTR suppression. Furthermore, rescue experiments revealed that the miR-30a-DBF4 axis regulated the GC cell proliferation and migration. The important composition in tumor microenvironment, lactate, may be the primary factor that suppressed miR-30a to strengthen the expression of DBF4. Conclusions: Taken together, our study was the first to identify DBF4 as a regulator of cell proliferation and migration in GC. Furthermore, our study identified the lactate-miR-30a-DBF4 axis as a crucial regulator of tumor progression and the tumor sensitivity to 5-Fu, which maybe serve useful for the development of novel therapeutic targets.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Luyang Zhang ◽  
Yunjian Wang ◽  
Ling Zhang ◽  
Guohua You ◽  
Congyu Li ◽  
...  

Abstract Background Pancreatic cancer (PC) is one of the deadliest cancers about the digestive system. Recent researches have validated that long non-coding RNAs (lncRNAs) play vital roles in various cancers, while the function of LINC01006 in PC is rarely clarified. Aim of the study Investigation of the specific role of LINC01006 in PC. Methods LINC01006 expression was examined by RT-qPCR. CCK-8, EdU, transwell, wound healing, and western blot assays were carried out to explore the function of LINC01006 in PC. The interaction among LINC01006, miR-2682-5p and HOXB8 was verified by luciferase reporter, RIP and ChIP assays. Results The expression of LINC01006 was markedly upregulated in PC tissues and cells. Furthermore, LINC01006 knockdown inhibited PC cell proliferation, invasion and migration, and upregulation of LINC01006 led to the opposite results. Besides, miR-2682-5p expression was downregulated and negatively regulated by LINC01006 in PC. Meanwhile, LINC01006 could bind with miR-2682-5p in PC. Moreover, miR-2682-5p negatively regulated HOXB8 expression and there was a binding site between miR-2682-5p and HOXB8 in PC. Additionally, miR-2682-5p overexpression or HOXB8 knockdown rescued the promotive effects of LINC01006 upregulation on PC cell progression. Similarly, miR-2682-5p inhibition or HOXB8 overexpression countervailed the repressive role of LINC01006 downregulation in PC cell progression. In addition, the transcription factor HOXB8 could activate LINC01006 transcription in PC. Conclusions LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis, which may facilitate the treatment for PC.


Sign in / Sign up

Export Citation Format

Share Document