scholarly journals miR-299-3p suppresses cell progression and induces apoptosis by downregulating PAX3 in gastric cancer

2021 ◽  
Vol 16 (1) ◽  
pp. 266-276
Author(s):  
Zhenfen Wang ◽  
Qing Liu ◽  
Ping Huang ◽  
Guohao Cai

Abstract Gastric cancer (GC) is ranked the fourth leading cause of cancer-related death, with an over 75% mortality rate worldwide. In recent years, miR-299-3p has been identified as a biomarker in multiple cancers, such as acute promyelocytic leukemia, thyroid cancer, and lung cancer. However, the regulatory mechanism of miR-299-3p in GC cell progression is still largely unclear. Cell viability and apoptosis tests were performed by CCK8 and flow cytometry assay, respectively. Transwell assay was recruited to examine cell invasion ability. The interaction between miR-299-3p and PAX3 was determined by the luciferase reporter system. PAX3 protein level was evaluated by western blot assay. The expression of miR-299-3p was downregulated in GC tissues and cell lines (MKN-45, AGS, and MGC-803) compared with the normal tissues and cells. Besides, overexpression of miR-299-3p significantly suppressed proliferation and invasion and promoted apoptosis in GC. Next, we clarified that PAX3 expression was regulated by miR-299-3p using a luciferase reporter system, qRT-PCR, and western blot assay. Additionally, downregulation of PAX3 repressed GC cell progression. The rescue experiments indicated that restoration of PAX3 inversed miR-299-3p-mediated inhibition on cell proliferation and invasion. miR-299-3p suppresses cell proliferation and invasion as well as induces apoptosis by regulating PAX3 expression in GC, representing desirable biomarkers for GC diagnosis and therapy.

Author(s):  
Xuyan Li ◽  
Xuanfang Zhong ◽  
Xiuhua Pan ◽  
Yan Ji

Growing evidence has demonstrated that numerous microRNAs (miRNAs) may participate in the regulation of gastric carcinogenesis and progression. This phenomenon suggests that gastric cancer-related miRNAs can be identified as effective therapeutic targets for this disease. miRNA-708 (miR-708) has recently been reported to be aberrantly expressed in several types of cancer and contribute to carcinogenesis and progression. However, the expression level, biological roles, and underlying mechanisms of miR-708 in gastric cancer are poorly understood. Here we found that miR-708 was downregulated in gastric cancer tissues and cell lines. Downregulated miR-708 expression was significantly associated with lymphatic metastasis, invasive depth, and TNM stage. Further investigation indicated that ectopic expression of miR-708 prohibited cell proliferation and invasion in gastric cancer. Bioinformatics analysis showed that Notch1 was a potential target of miR-708. Notch1 was further confirmed as a direct target gene of miR-708 in gastric cancer by dual-luciferase reporter assay, reverse transcription quantitative polymerase chain reaction, and Western blot analysis. Furthermore, an inverse association was found between miR-708 and Notch1 mRNA levels in gastric cancer tissues. In addition, restored Notch1 expression rescued the inhibitory effects on gastric cancer cell proliferation and invasion induced by miR-708 overexpression. Our findings highlight the tumor-suppressive roles of miR-708 in gastric cancer and suggest that miR-708 may be investigated as a novel target for gastric cancer treatment.


2020 ◽  
Author(s):  
Hou Wei ◽  
Lu Xu ◽  
Tao Su ◽  
Yunxiao Wu ◽  
Yujuan Liu ◽  
...  

Abstract Background: This study aims at verifying the effect of non-coding RNA SNHG16 on promotes NPC cell progression via binding miR-23b-3p.Methods: The expression of non-coding RNA SNHG16 was detected by qRT-PCR in cell lines including c666-1 and HONE-1. Si-MCM6 and si-SNHG16 are transfected to cells to verify their effects on cell proliferation and apoptosis. MTT is used to measure cell viability while flow cytometry assay and transwell assay were used for cell apoptosis, cell cycle and invasion respectively. The expression level of MCM6 was determined by western blot. Relationships between mRNA MCM6 and lncRNA SNHG16 were explored by qRT-PCR and nude mouse tumorigenicity assay.Results: The MCM6 was overexpressed in NPC tissues and lncRNA SNHG16 showed the same trend. Those two factors were correlated with high cancer stage. The expression of MCM6 was decreased after si-SNHG16 and dual luciferase reporter system demonstrated their combine with miR-23b-3p. Further we explored the down-regulation of lncRNA SNHG16 could inhibit NPC cell proliferation, colony formation and also accelerate cell apoptosis rate. And this result could be altered by adding miR-23b-3p inhibitor.Conclusion: The lncRNA SNHG16 is able to promote the NPC proliferation via binding miR-23b-3p, which has potential for future treatment.


2019 ◽  
Vol 51 (9) ◽  
pp. 900-907 ◽  
Author(s):  
Jiying Huang ◽  
Manru Shen ◽  
Meizhu Yan ◽  
Ying Cui ◽  
Zhenjun Gao ◽  
...  

Abstract Currently, exosomes rich in RNAs and proteins are regarded as vital mediators of intercellular communication. Here, we aimed to explore the effects of exosomal miR-1290 in gastric cancer (GC) and understand its mechanism of action on GC progression. We first isolated exosomes from serum samples of GC patients and healthy people and characterized them by transmission electron microscopy. Then, we examined the expression level of miR-1290 contained in the exosomes by quantitative reverse-transcription polymerase chain reaction and found that exosomal miR-1290 was overexpressed in GC patients and cell lines. Promotion of proliferation, migration, and invasiveness of GC cells was noted after they were incubated with the isolated miR-1290-rich exosomes compared with incubation with a negative control. Furthermore, we predicted that naked cuticle homolog 1 (NKD1) mRNA is a direct target of miR-1290 and confirmed their interaction by a dual luciferase reporter assay. NKD1 overexpression attenuated the stimulatory effects of miR-1290 on GC cells. Collectively, our results suggest that exosomal miR-1290 enhances GC cell proliferation and invasion by targeting NKD1 mRNA and downregulating NKD1 expression. A better understanding of this process may facilitate the development of novel therapeutic agents for GC.


2019 ◽  
Author(s):  
Shanshan Sun ◽  
Hui Wang ◽  
Mingyou Ji

Abstract Background This study aimed to investigate the mechanism of microRNA-222-3p (miR-222-3p) on the progression of diffuse large B-cell lymphoma (DLBCL) cells.Methods DLBCL tissue was isolated from DLBCL patients during surgery. OCI-LY10 and U2932 cells were cultured. Then, qRT-PCR, Western blot, luciferase reporter gene assay, RNA pull-down assay, MTT assay, colony formation analysis, flow cytometry as well as Transwell assay were used to observe the effect of miR-222-3p on proliferation, migration, invasion and apoptosis of DLBCL cells. Furthermore, the tumor growth affected by miR-222-3p was further investigated based on animal experiment.Results Compared with the control group, the expression level of miR-222-3p was up-regulated in DLBCL group. The luciferase reporter gene and RNA pull down assay showed that PPP2R2A 3’-untranslated region (3’-UTR) carried the directly binding site of miR-222-3p. Furthermore, MTT assay, colony formation, qRT-PCR and Western blot showed that miR-222-3p promoted the DLBCL cell proliferation and invasion, and inhibited apoptosis. Finally, the mice experiment showed that miR-222-3p mimics inhibited PPP2R2A expression and promoted tumor growth in vivo.Conclusions Upregulation of miR-222-3p might take part in the progression of DLBCL by suppressing PPP2R2A expression. Furthermore, miR-222-3p promoted the DLBCL cell proliferation and invasion, and inhibited apoptosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaobin Liao ◽  
Linbao Wen ◽  
Liqiong Luo

Background. LncRNA NR2F1-AS1 has been identified as an oncogene in some human tumors, such as breast cancer, nonsmall cell lung cancer, and esophageal squamous cell carcinoma. Nonetheless, whether NR2F1-AS1 is involved in the progression of gastric cancer (GC) remains unknown. Methods. The expression patterns of NR2F1-AS1, MAP3K2, and miR-493-5p in GC tissues and cells were detected by RT-qPCR. The protein expression of MAP3K2 was assessed by the Western blotting assay. The MTT assay and flow cytometry were performed to measure cell proliferation and cell apoptosis in GC cells. The transwell assay was adopted to assess cell migration in GC cells. The relationship between NR2F1-AS1, MAP3K2, and miR-493-5p was verified by a dual-luciferase reporter assay. Results. The increased NR2F1-AS1 and MAP3K2 expressions were discovered in GC tissues and cells compared with control groups. Knockdown of NR2F1-AS1 and MAP3K2 dramatically suppressed cell proliferation and migration, while it enhanced cell apoptosis in GC cells. In addition, NR2F1-AS1 was found to be a sponge of miR-493-5p, and MAP3K2 was a downstream gene of miR-493-5p. Moreover, the expression of MAP3K2 was notably reduced by miR-493-5p, and NR2F1-AS1 counteracted the inhibition of miR-493-5p. Conclusion. Thus, NR2F1-AS1 was verified to regulate GC cell progression by sponging miR-493-5p to upregulate MAP3K2 expression.


2018 ◽  
Vol 32 ◽  
pp. 205873841878163 ◽  
Author(s):  
Yanxia Huang ◽  
Jing Zhang ◽  
Ge Wang ◽  
Xiaoyu Chen ◽  
Rui Zhang ◽  
...  

Oxymatrine (OMT) as a type of alkaloids collected from Sophora flavescens Ait exerts some biological functions including anticancer properties. Here, we investigated the therapeutic effects of OMT in gastric cancer cells (HGC 27 and AGS). As a result, the exposure of gastric cancer (GC) cells to OMT contributed to the suppression of cell proliferation and invasion. Interleukin 21 receptor (IL-21R) was identified to be differentially expressed between OMT treatment group (4 mg/mL) and control group (0 mg/mL), and knockdown of IL-21R repressed cell proliferation and invasion via inactivation of the JAK2/STAT3 pathway. The rescue experiment showed that IL-21R overexpression attenuated the anti-tumor effects of OMT through activation of the JAK2/STAT3 pathway. Moreover, the expression of IL-21R was significantly upregulated in GC samples compared with the adjacent normal tissues and associated with overall survival (OS) and tumor recurrence of GC patients. Taken together, in this study, we evaluated the anti-tumor effects of OMT on GC by investigating proliferation and invasion ability changes, and our findings show that OMT exhibits effects via regulation of JAK/STAT signaling pathway. Through the mechanism study, we may enlighten the potential therapeutic target for treatment of GC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junyu Ren ◽  
Guoqing Pan ◽  
Jun Yang ◽  
Ning Xu ◽  
Qiong Zhang ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most common cancers in the digestive system. Circular RNAs (circRNAs) have been found to function as important regulators in the pathogenesis of GC. This study focused on the biological role and molecular mechanism of circ_0000620 in GC progression. Methods The expression levels of circ_0000620, microRNA-671-5p (miR-671-5p) and Matrix MetalloProteinase 2 (MMP2) were measured by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) assay or western blot. The stability of circ_0000620 was confirmed by Ribonuclease R (RNase R) assay. The protein levels were determined by western blot assay. Cell viability, colony formation, cell migratory ability, cell invasive ability and tube formation capacity were respectively examined by CCK-8 assay, colony formation assay, wound healing assay, transwell invasion assay and tube formation assay. The interaction between miR-671-5p and circ_0000620 or MMP2 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The role of circ_0000620 in GC undefined was explored by xenograft tumor assay. Results Circ_0000620 was conspicuously upregulated in GC tissues and cells. Circ_0000620 knockdown reduced cell viability, colony formation, migration, invasion and tube formation capacity of GC cells in vitro. Furthermore, MMP2 was upregulated in GC and MMP2 overexpression reversed the anti-tumor response of circ_0000620 knockdown in GC progression. Moreover, circ_0000620 directly interacted with miR-671-5p and circ_0000620 downregulation regulated malignant behaviors of GC cells by upregulating miR-671-5p. In addition, silencing of circ_0000620 inhibited tumor growth in vivo. Conclusions Circ_0000620 knockdown inhibited the malignant development of GC partly through modulating the miR-671-5p/MMP2 axis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhihuan Luo ◽  
Shaojian Chen ◽  
Xiaguang Chen

Abstract Background Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, and fibroblast-like synoviocytes (FLSs) are key effector cells in RA development. Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of RA. However, the precise mechanism of circRNA mitogen-activated protein kinase (circMAPK9) in the cell processes of FLSs has not been reported. Methods The expression levels of circMAPK9, microRNA-140-3p (miR-140-3p), and protein phosphatase magnesium-dependent 1A (PPM1A) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cell migration and invasion were tested by transwell assay. All the proteins were inspected by western blot assay. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-140-3p and circMAPK9 or PPM1A was verified by dual-luciferase reporter assay. Results CircMAPK9 and PPM1A were upregulated and miR-140-3p was downregulated in RA patients and FLSs from RA patients (RA-FLSs). CircMAPK9 silence suppressed cell proliferation, migration, invasion, inflammatory response, and promoted apoptosis in RA-FLSs. MiR-140-3p was a target of circMAPK9, and miR-140-3p downregulation attenuated the effects of circMAPK9 knockdown on cell progression and inflammatory response in RA-FLSs. PPM1A was targeted by miR-140-3p, and circMAPK9 could regulate PPM1A expression by sponging miR-140-3p. Furthermore, miR-140-3p could impede cell biological behaviors in RA-FLSs via targeting PPM1A. Conclusion CircMAPK9 knockdown might inhibit cell proliferation, migration, invasion, inflammatory response, and facilitate apoptosis in RA-FLSs via regulating miR-140-3p/PPM1A axis, offering a new mechanism for the comprehension of RA development and a new insight into the potential application of circMAPK9 in RA treatment.


2021 ◽  
Author(s):  
Bingtian Liu ◽  
Ling Qiang ◽  
Bingxin Guan ◽  
Zhipeng Ji

Abstract Background: Recently, kinesin family member 21B (KIF21B) has been reported to be an oncogene in non-small cell lung cancer and hepatocellular carcinoma. However, the functional role and related molecular mechanisms underlying gastric cancer (GC) pathogenesis remain largely uncovered. Methods: The expression of KIF21B was investigated by analysis of Oncomine microarray gene expression datasets and clinical specimens. The association between KIF21B and miR-132-3p was assessed by luciferase reporter assay. CCK-8 assay and transwell assay were performed to analyze the functional role of miR-132-3p/KIF21B in GC cells. Related protein expression levels were evaluated by immunohistochemistry and western blot analysis.Results: We first found that the expression of KIF21B was upregulated in GC tissues compared with adjunct normal tissues. Knockdown of KIF21B significantly suppressed the proliferation, migration and invasion in GC cell lines (AGS and SNU-5). KIF21B was confirmed as the target of miR-132-3p in GC cells. Moreover, miR-132-3p was down-regulated and inversely correlated with KIF21B expression in GC tissues. Further functional experiments demonstrated that overexpression of KIF21B remarkedly reversed the suppressive effects of miR-132-3p overexpression on GC cell proliferation, migration and invasion. Furthermore, miR-132-3p overexpression downregulated the protein levels of Wnt1, c-Myc, β-catenin, PCNA and N-cadherin, and upregulated E-cadherin expression in GC cells, which were all alleviated after KIF21B overexpression. Conclusions: In summary, our findings provide the first evidence that down-regulation of KIF21B by miR-132-3p suppresses cellular functions in GC via regulating Wnt/β-catenin signaling.


2020 ◽  
Author(s):  
Zengxi Yang ◽  
Xi OuYang ◽  
Liang Zheng ◽  
Lizhen Dai ◽  
Wenjuan Luo

Abstract Background:The expression levels and detailed functions of LINC00265 in gastric cancer (GC) have not yet been explored. This study aimed to measure LINC00265 expression in GC tissues and cell lines, investigate its specific roles in the aggressive characteristics of GC cells in vitro and in vivo, and elucidate the regulatory mechanisms of LINC00265 action.Materials and methods: The qRT-PCR was performed to test the RNA expression levels in GC tissues and cell lines. Cell proliferation was detected by CCK-8 and colony formation assays. Western blot assay was used to measure relevant protein expression. Luciferase reporter assays were performed to investigate the association between LINC00265 and microRNA-144-3p and CBX4.Results: LINC00265 expression was high in GC tissue samples and cell lines; LINC00265 overexpression correlated with shorter overall survival of the patients. A LINC00265 knockdown inhibited GC cell proliferation in vitro and slowed tumor growth in vivo. Mechanism investigation revealed that LINC00265 acts as a competing endogenous RNA on microRNA-144-3p (miR- 144) in GC cells. Chromobox 4 (CBX4) mRNA was identified as a direct target of miR-144-3p in GC cells. The knockdown of miR-144-3p counteracted the reduction in the malignant characteristics of GC cells by the downregulation of LINC00265.Conclusion: In conclusion, LINC00265 functions as a competing endogenous RNA targeting miR-144-3p and increases the malignancy of GC cells in vitro and in vivo by upregulating CBX4.


Sign in / Sign up

Export Citation Format

Share Document