scholarly journals Blockchain-Enhanced Fair Task Scheduling for Cloud-Fog-Edge Coordination Environments: Model and Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Wenjuan Li ◽  
Shihua Cao ◽  
Keyong Hu ◽  
Jian Cao ◽  
Rajkumar Buyya

The cloud-fog-edge hybrid system is the evolution of the traditional centralized cloud computing model. Through the combination of different levels of resources, it is able to handle service requests from terminal users with a lower latency. However, it is accompanied by greater uncertainty, unreliability, and instability due to the decentralization and regionalization of service processing, as well as the unreasonable and unfairness in resource allocation, task scheduling, and coordination, caused by the autonomy of node distribution. Therefore, this paper introduces blockchain technology to construct a trust-enabled interaction framework in a cloud-fog-edge environment, and through a double-chain structure, it improves the reliability and verifiability of task processing without a big management overhead. Furthermore, in order to fully consider the reasonability and load balance in service coordination and task scheduling, Berger’s model and the conception of service justice are introduced to perform reasonable matching of tasks and resources. We have developed a trust-based cloud-fog-edge service simulation system based on iFogsim, and through a large number of experiments, the performance of the proposed model is verified in terms of makespan, scheduling success rate, latency, and user satisfaction with some classical scheduling models.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1949
Author(s):  
Lukas Sevcik ◽  
Miroslav Voznak

Video quality evaluation needs a combined approach that includes subjective and objective metrics, testing, and monitoring of the network. This paper deals with the novel approach of mapping quality of service (QoS) to quality of experience (QoE) using QoE metrics to determine user satisfaction limits, and applying QoS tools to provide the minimum QoE expected by users. Our aim was to connect objective estimations of video quality with the subjective estimations. A comprehensive tool for the estimation of the subjective evaluation is proposed. This new idea is based on the evaluation and marking of video sequences using the sentinel flag derived from spatial information (SI) and temporal information (TI) in individual video frames. The authors of this paper created a video database for quality evaluation, and derived SI and TI from each video sequence for classifying the scenes. Video scenes from the database were evaluated by objective and subjective assessment. Based on the results, a new model for prediction of subjective quality is defined and presented in this paper. This quality is predicted using an artificial neural network based on the objective evaluation and the type of video sequences defined by qualitative parameters such as resolution, compression standard, and bitstream. Furthermore, the authors created an optimum mapping function to define the threshold for the variable bitrate setting based on the flag in the video, determining the type of scene in the proposed model. This function allows one to allocate a bitrate dynamically for a particular segment of the scene and maintains the desired quality. Our proposed model can help video service providers with the increasing the comfort of the end users. The variable bitstream ensures consistent video quality and customer satisfaction, while network resources are used effectively. The proposed model can also predict the appropriate bitrate based on the required quality of video sequences, defined using either objective or subjective assessment.


Author(s):  
Naresh Sammeta ◽  
Latha Parthiban

Recent healthcare systems are defined as highly complex and expensive. But it can be decreased with enhanced electronic health records (EHR) management, using blockchain technology. The healthcare sector in today’s world needs to address two major issues, namely data ownership and data security. Therefore, blockchain technology is employed to access and distribute the EHRs. With this motivation, this paper presents novel data ownership and secure medical data transmission model using optimal multiple key-based homomorphic encryption (MHE) with Hyperledger blockchain (OMHE-HBC). The presented OMHE-HBC model enables the patients to access their own data, provide permission to hospital authorities, revoke permission from hospital authorities, and permit emergency contacts. The proposed model involves the MHE technique to securely transmit the data to the cloud and prevent unauthorized access to it. Besides, the optimal key generation process in the MHE technique takes place using a hosted cuckoo optimization (HCO) algorithm. In addition, the proposed model enables sharing of EHRs by the use of multi-channel HBC, which makes use of one blockchain to save patient visits and another one for the medical institutions in recoding links that point to EHRs stored in external systems. A complete set of experiments were carried out in order to validate the performance of the suggested model, and the results were analyzed under many aspects. A comprehensive comparison of results analysis reveals that the suggested model outperforms the other techniques.


2011 ◽  
Vol 1 ◽  
pp. 375-380
Author(s):  
Shu Ai Wan ◽  
Kai Fang Yang ◽  
Hai Yong Zhou

In this paper the important issue of multimedia quality evaluation is concerned, given the unimodal quality of audio and video. Firstly, the quality integration model recommended in G.1070 is evaluated using experimental results. Theoretical analyses aide empirical observations suggest that the constant coefficients used in the G.1070 model should actually be piecewise adjusted for different levels of audio and visual quality. Then a piecewise function is proposed to perform multimedia quality integration under different levels of the audio and visual quality. Performance gain observed from experimental results substantiates the effectiveness of the proposed model.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
RenLan Wang ◽  
Yanhong Wu

Blockchain technology is a database that is operated by multiple parts and forms a chain structure through hash index. The blockchain uses multiple nodes and distributes multiple accesses to data, thereby reducing the dependence on the central Internet server and avoiding the possibility of damage to the central server point due to data and data loss. Encryption technology is used to ensure its integrity and ensure that the data files stored in the blockchain are not tampered with or deleted maliciously. Blockchain technology has inherent advantages in supply chain finance with its technical attributes such as nontampering, distributed ledger, and traceability and has great potential to build trust to solve the main problems of supply chain finance, which is conducive to promoting financial development in the Beibu Gulf region. This article mainly introduces the application research of blockchain technology in supply chain finance in the Beibu Gulf region and intends to provide some ideas for the development of supply chain finance in the Beibu Gulf region combined with blockchain technology. This article proposes the application research methods of blockchain technology in supply chain finance in the Beibu Gulf region, including blockchain technology, supply chain financial risk evaluation on the blockchain, and supply chain finance game for relevant experiments. The experimental results of this article show that the average processing time of the algorithm of the designed blockchain supply chain financial system is 4.10 seconds, the algorithm processing efficiency is faster, and the relevant risks can be better assessed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krishna Vishwanath Iyer ◽  
V.V. Ravi Kumar

Purpose This paper aims to propose an innovative blockchain-based system enabling implementation of a bond-pays model in credit rating industry. Issuer-pays model has led to conflict of interest resulting in rating shopping and inflation. Alternative business models have their own problems, e.g. investor-pays model suffers from “free rider” and public dissemination challenges, whereas government-controlled business models can lead to market distortion. Bond-pays model has been difficult to implement owing to operational difficulties in managing co-ordination amongst multiple entities involved, often with conflicting goals. Blockchain technology enables inter-organizational systems that foster trust amongst non-trusting entities, facilitating business functions such as credit rating to be carried out. Design/methodology/approach This paper outlines current processes in credit rating business that has led to repeated rating failures and proposes a new set of processes, leveraging capabilities of blockchain technology to enable implementation of an arms-length bond-pays model. Findings A proof-of-concept system, namely, rating chain has been designed to implement a small part of the proposed model to establish technical feasibility in a blockchain environment. Practical implications A fully functional blockchain-based system on bond-pays business model, if built and adopted, could impact how credit rating market functions currently and could contribute to a reduction in rating-related challenges. Originality/value The proposal to adopt blockchain technologies in implementing a bond-pays model in credit rating industry is a novel contribution.


Author(s):  
Abdelaziz Elbaghdadi ◽  
Soufiane Mezroui ◽  
Ahmed El Oualkadi

The cryptocurrency is the first implementation of blockchain technology. This technology provides a set of tracks and innovation in scientific research, such as use of data either to detect anomalies either to predict price in the Bitcoin and the Ethereum. Furthermore, the blockchain technology provide a set of technique to automate the business process. This chapter presents a review of some research works related to cryptocurrency. A model with a KNN algorithm is proposed to detect illicit transaction. The proposed model uses both the elliptic dataset and KNN algorithm to detect illicit transaction. Furthermore, the elliptic dataset contains 203,769 nodes and 234,355 edges; it allows to classify the data into three classes: illicit, licit, or unknown. Each node has associated 166 features. The first 94 features represent local information about the transaction. The remaining 72 features are called aggregated features. The accuracy exceeded 90% with k=2 and k=4, the recall reaches 56% with k=3, and the precision reaches 78% with k=4.


2019 ◽  
Vol 35 (3) ◽  
pp. 1189-1212 ◽  
Author(s):  
Alex V. Shegay ◽  
Christopher J. Motter ◽  
Kenneth J. Elwood ◽  
Richard S. Henry

The use of deformation capacity limits is becoming increasingly common in seismic design and assessment of reinforced concrete (RC) walls. Deformation capacity limits for RC walls in existing design and assessment documents are reviewed using a comprehensive database. It is found that the existing models are inconsistent and do not account for variation in deformation capacity with changes in the ratio of neutral axis depth to wall length ( c/ L w) and ratio of transverse reinforcement spacing to longitudinal bar diameter ( s/ d b) at the wall end region. A new mechanics-based model considering strain limits on the concrete and reinforcement is recommended. Concrete compressive strain limits for different levels of wall end region detailing are selected based on curvature ductilities for the walls in the database. Reinforcement tensile strain is limited based on a model for bar buckling. The proposed model, which accounts for c/ L w and s/ d b, is shown to have less dispersion and more accuracy than existing models when compared against experimental data and provides consistency between assessment and design provisions.


Symmetry ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Byeowool Kim ◽  
Yongik Yoon

The challenge that journalism is facing these days in the Internet mobile environment is greater than ever before. Journalism is losing its revenue structure to platform operators favoring a certain markets, and also the trust of its readers in light of fake news and infected news. To alleviate this situation, we propose a blockchain technology that is applicable to journalism in order to achieve decentralization as a reasonable alternative. The journalism model based on hybrid blockchain aims to achieve the following: the delivery of articles with sharing value, what we call proof of sharing; the distribution of roles of personalized agenda settings; and finally, the use of agora to collect public opinions. With all these, we attempt to resolve the issues with current journalism with our proposed model based on blockchain.


2020 ◽  
Vol 34 (35) ◽  
pp. 2050401
Author(s):  
Mohammed Zidan

This paper shows a novel quantum computing model that solves quantum computing problems based on the degree of entanglement. We show two main theorems: the first theorem shows the quantum circuit that can be used to quantify the concurrence value between two adjacent qubits. The second theorem shows the quantum circuit of a proposed operator, called [Formula: see text] operator, which can be used to differentiate between the non-orthogonal states in the form [Formula: see text], with arbitrary accuracy, using the concurrence value. Then, the mathematical machinery for implementing the proposed model and its techniques using the circuit model is investigated extensively.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2878 ◽  
Author(s):  
Zheng Che ◽  
Yu Wang ◽  
Juanjuan Zhao ◽  
Yan Qiang ◽  
Yue Ma ◽  
...  

With the rapid development of the energy internet, the transaction of distributed renewable energy (DRE) is playing an increasingly important role in the energy market. However, in the transaction model of distributed renewable energy combined with public blockchain technology, nodes in the trading network can join or leave the network at any time without any permission, which hinders the regulation of electricity institutions. Corresponding to the transaction principle, a distributed renewable energy transaction authentication mechanism based on consortium blockchain is proposed in this paper. First, certificate authority nodes were set in the transaction network to provide nodes with access authority by controlling the public keys and private keys of trading participants so that they can complete their identity authentication. Next, essential chaincodes in the transaction authentication were designed and deployed on a Hyperledger Fabric blockchain site, and a simulation experiment of a simple DRE transaction was used to elaborate the details on the transaction process. Finally, the proposed model was evaluated according to its performance and proved to be practical and effective.


Sign in / Sign up

Export Citation Format

Share Document