scholarly journals The Regulatory Role of α-Ketoglutarate Metabolism in Macrophages

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shaojuan Liu ◽  
Jie Yang ◽  
Zhenfang Wu

Macrophages are multifunctional immune cells whose functions depend on polarizable phenotypes and the microenvironment. Macrophages have two phenotypes, including the M1 proinflammatory phenotype and the M2 anti-inflammatory phenotype, which play important roles in many inflammatory responses and diseases. α-Ketoglutarate is a key metabolite of the TCA cycle and can regulate the phenotype of macrophage polarization to exert anti-inflammatory effects in many inflammation-related diseases. In this review, we primarily elucidate the metabolism, regulatory mechanism, and perspectives of α-ketoglutarate on macrophages. The regulation of macrophage polarization by α-ketoglutarate may provide a promising target for the prevention and therapy of inflammatory diseases and is beneficial to animal health.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: –]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.



2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.



2014 ◽  
Vol 307 (11) ◽  
pp. H1634-H1642 ◽  
Author(s):  
Reetu D. Singla ◽  
Jing Wang ◽  
Dinender K. Singla

Macrophage polarization is emerging as an important area of research for the development of novel therapeutics to treat inflammatory diseases. Within the current study, the role of Notch1R in macrophage differentiation was investigated as well as downstream effects in THP-1 monocytes cultured in “inflammation mimicry” media. Interference of Notch signaling was achieved using either the pharmaceutical inhibitor DAPT or Notch1R small interfering RNA (siRNA), and Notch1R expression, macrophage phenotypes, and anti- and proinflammatory cytokine expression were evaluated. Data presented show that Notch1R expression on M1 macrophages as well as M1 macrophage differentiation is significantly elevated during cellular stress ( P < 0.05). However, under identical culture conditions, interference to Notch signaling via Notch1R inhibition mitigated these results as well as promoted M2 macrophage differentiation. Moreover, when subjected to cellular stress, macrophage secretion of proinflammatory cytokines was significantly heightened ( P < 0.05). Importantly, Notch1R inhibition not only diminished proinflammatory cytokine secretion but also enhanced anti-inflammatory protein release ( P < 0.05). Our data suggest that Notch1R plays a pivotal role in M1 macrophage differentiation and heightened inflammatory responses. Therefore, we conclude that inhibition of Notch1R and subsequent downstream signaling enhances monocyte to M2 polarized macrophage outcomes and promotes anti-inflammatory mediation during cellular stress.



2019 ◽  
Vol 61 (2) ◽  
pp. 143-158 ◽  
Author(s):  
Alexander J. Nelson ◽  
Daniel J. Stephenson ◽  
Christopher L. Cardona ◽  
Xiaoyong Lei ◽  
Abdulaziz Almutairi ◽  
...  

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β−/−) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β−/−, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.



Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 97 ◽  
Author(s):  
Maria Daskalaki ◽  
Dimitra Vyrla ◽  
Maria Harizani ◽  
Christina Doxaki ◽  
Aristides Eliopoulos ◽  
...  

Macrophages are central mediators of inflammation, orchestrating the inflammatory response through the production of cytokines and nitric oxide. Macrophages obtain pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, which can be modulated by soluble factors, including natural products. Despite the crucial protective role of inflammation, chronic or deregulated inflammation can lead to pathological states, such as autoimmune diseases, metabolic disorders, cardiovascular diseases, and cancer. In this case, we studied the anti-inflammatory activity of neorogioltriol (1) in depth and identified two structurally related diterpenes, neorogioldiol (2), and O11,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol (3), with equally potent activity. We investigated the mechanism of action of metabolites 1–3 and found that all three suppressed macrophage activation and promoted an M2-like anti-inflammatory phenotype by inducing expression of Arginase1, MRC1, IRAK-M, the transcription factor C/EBPβ, and the miRNA miR-146a. In addition, they suppressed iNOS induction and nitric oxide production. Importantly, treatment of mice with 2 or 3 suppressed DSS-induced colitis by reducing tissue damage and pro-inflammatory cytokine production. Thus, all these three diterpenes are promising lead molecules for the development of anti-inflammatory agents targeting macrophage polarization mechanisms.



2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangci Su ◽  
Xiaoan Tao

IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.



Author(s):  
Fengyan Jin ◽  
Jian Li ◽  
Jianfeng Guo ◽  
Thorsten R Doeppner ◽  
Dirk M Hermann ◽  
...  

Abstract Epigenomic and epigenetic research has been providing a number of new insights into a variety of diseases caused by nonresolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterials walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly-plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emgerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g., TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodeling of macrophages through DNA methylation or histone modifications (e.g., methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers, and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.



2020 ◽  
Author(s):  
Riccardo Mobili ◽  
Sonia La Cognata ◽  
Francesca Merlo ◽  
Andrea Speltini ◽  
Massimo Boiocchi ◽  
...  

<div> <p>The extraction of the succinate dianion from a neutral aqueous solution into dichloromethane is obtained using a lipophilic cage-like dicopper(II) complex as the extractant. The quantitative extraction exploits the high affinity of the succinate anion for the cavity of the azacryptate. The anion is effectively transferred from the aqueous phase, buffered at pH 7 with HEPES, into dichloromethane. A 1:1 extractant:anion adduct is obtained. Extraction can be easily monitored by following changes in the UV-visible spectrum of the dicopper complex in dichloromethane, and by measuring the residual concentration of succinate in the aqueous phase by HPLC−UV. Considering i) the relevance of polycarboxylates in biochemistry, as e.g. normal intermediates of the TCA cycle, ii) the relevance of dicarboxylates in the environmental field, as e.g. waste products of industrial processes, and iii) the recently discovered role of succinate and other dicarboxylates in pathophysiological processes including cancer, our results open new perspectives for research in all contexts where selective recognition, trapping and extraction of polycarboxylates is required. </p> </div>



2019 ◽  
Vol 16 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Hamid Farhang ◽  
Laleh Sharifi ◽  
Mohammad Mehdi Soltan Dallal ◽  
Mona Moshiri ◽  
Zahra Norouzbabaie ◽  
...  

Background: The non-steroidal anti-inflammatory drugs (NSAIDs) play crucial role in the controlling of inflammatory diseases. Due to the vast side effects of NSAIDs, its use is limited. G2013 or &amp;#945;-L-Guluronic Acid is a new NSAID with immunomodulatory features. Objectives: Considering the leading role of TLRs in inflammatory responses, in this study, we aimed to evaluate G2013 cytotoxicity and its effect on the expression of TLR2 and TLR4 molecules. Methods: HEK293-TLR2 and HEK293-TLR4 cells were cultured and seeded on 96-well cell plate, and MTT assay was performed for detecting the viability of the cells after treatment with different concentrations of G2013. HT29 cells were grown and treated with low and high doses of G2013. After total RNA extraction and cDNA synthesis, quantitative real-time PCR were performed to assess the TLR2 and TLR4 mRNA synthesis. Results: We found that concentrations of ≤125 &amp;#181;g/ml of G2013 had no apparent cytotoxicity effect on the HEK293-TLR2 and -TLR4 cells. Our results indicated that after G2013 treatment (5 &amp;#181;g/ml) in HT29 cells, TLR2 and TLR4 mRNA expression decreased significantly compared with the untreated control group (p=0.02 and p=0.001 respectively). Conclusion: The results of this study revealed that G2013 can down regulate the TLR2 and TLR4 gene expression and exerts its inhibitory effect. Our findings are parallel to our previous finding which showed G2013 ability to down regulate the signaling pathway of TLRs. However, further studies are needed to identify the molecular mechanism of G2013.<p&gt;



2021 ◽  
Vol 14 (7) ◽  
pp. 692
Author(s):  
Ryldene Marques Duarte da Cruz ◽  
Francisco Jaime Bezerra Mendonça-Junior ◽  
Natália Barbosa de Mélo ◽  
Luciana Scotti ◽  
Rodrigo Santos Aquino de Araújo ◽  
...  

Rheumatoid arthritis, arthrosis and gout, among other chronic inflammatory diseases are public health problems and represent major therapeutic challenges. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed clinical treatments, despite their severe side effects and their exclusive action in improving symptoms, without effectively promoting the cure. However, recent advances in the fields of pharmacology, medicinal chemistry, and chemoinformatics have provided valuable information and opportunities for development of new anti-inflammatory drug candidates. For drug design and discovery, thiophene derivatives are privileged structures. Thiophene-based compounds, like the commercial drugs Tinoridine and Tiaprofenic acid, are known for their anti-inflammatory properties. The present review provides an update on the role of thiophene-based derivatives in inflammation. Studies on mechanisms of action, interactions with receptors (especially against cyclooxygenase (COX) and lipoxygenase (LOX)), and structure-activity relationships are also presented and discussed. The results demonstrate the importance of thiophene-based compounds as privileged structures for the design and discovery of novel anti-inflammatory agents. The studies reveal important structural characteristics. The presence of carboxylic acids, esters, amines, and amides, as well as methyl and methoxy groups, has been frequently described, and highlights the importance of these groups for anti-inflammatory activity and biological target recognition, especially for inhibition of COX and LOX enzymes.



Sign in / Sign up

Export Citation Format

Share Document