scholarly journals A Deep Learning Approach for Table Tennis Forehand Stroke Evaluation System Using an IMU Sensor

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Sahar S. Tabrizi ◽  
Saeid Pashazadeh ◽  
Vajiheh Javani

Psychological and behavioral evidence suggests that home sports activity reduces negative moods and anxiety during lockdown days of COVID-19. Low-cost, nonintrusive, and privacy-preserving smart virtual-coach Table Tennis training assistance could help to stay active and healthy at home. In this paper, a study was performed to develop a Forehand stroke’ performance evaluation system as the second principal component of the virtual-coach Table Tennis shadow-play training system. This study was conducted to show the effectiveness of the proposed LSTM model, compared with 2DCNN and RBF-SVR time-series analysis and machine learning methods, in evaluating the Table Tennis Forehand shadow-play sensory data provided by the authors. The data was generated, comprising 16 players’ Forehand strokes racket’s movement and orientation measurements; besides, the strokes’ evaluation scores were assigned by the three coaches. The authors investigated the ML models’ behaviors changed by the hyperparameters values. The experimental results of the weighted average of RMSE revealed that the modified LSTM models achieved 33.79% and 4.24% estimation error lower than 2DCNN and RBF-SVR, respectively. However, the R ¯ 2 results show that all nonlinear regression models are fit enough on the observed data. The modified LSTM is the most powerful regression method among all the three Forehand types in the current study.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3870
Author(s):  
Wen-Lan Wu ◽  
Jing-Min Liang ◽  
Chien-Fei Chen ◽  
Kuei-Lan Tsai ◽  
Nian-Shing Chen ◽  
...  

Background: This study presents an intelligent table tennis e-training system based on a neural network (NN) model that recognizes data from sensors built into an armband device, with the component values (performances scores) estimated through principal component analysis (PCA). Methods: Six expert male table tennis players on the National Youth Team (mean age 17.8 ± 1.2 years) and seven novice male players (mean age 20.5 ± 1.5 years) with less than 1 year of experience were recruited into the study. Three-axis peak forearm angular velocity, acceleration, and eight-channel integrated electromyographic data were used to classify both player level and stroke phase. Data were preprocessed through PCA extraction from forehand loop signals. The model was trained using 160 datasets from five experts and five novices and validated using 48 new datasets from one expert and two novices. Results: The overall model’s recognition accuracy was 89.84%, and its prediction accuracies for testing and new data were 93.75% and 85.42%, respectively. Principal components corresponding to the skills “explosive force of the forearm” and “wrist muscle control” were extracted, and their factor scores were standardized (0–100) to score the skills of the players. Assessment results indicated that expert scores generally fell between 60 and 100, whereas novice scores were less than 70. Conclusion: The developed system can provide useful information to quantify expert-novice differences in fore-hand loop skills.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2021 ◽  
Vol 11 (7) ◽  
pp. 3208
Author(s):  
Andrea De Montis ◽  
Vittorio Serra ◽  
Giovanna Calia ◽  
Daniele Trogu ◽  
Antonio Ledda

Composite indicators (CIs), i.e., combinations of many indicators in a unique synthetizing measure, are useful for disentangling multisector phenomena. Prominent questions concern indicators’ weighting, which implies time-consuming activities and should be properly justified. Landscape fragmentation (LF), the subdivision of habitats in smaller and more isolated patches, has been studied through the composite index of landscape fragmentation (CILF). It was originally proposed by us as an unweighted combination of three LF indicators for the study of the phenomenon in Sardinia, Italy. In this paper, we aim at presenting a weighted release of the CILF and at developing the Hamletian question of whether weighting is worthwhile or not. We focus on the sensitivity of the composite to different algorithms combining three weighting patterns (equalization, extraction by principal component analysis, and expert judgment) and three indicators aggregation rules (weighted average mean, weighted geometric mean, and weighted generalized geometric mean). The exercise provides the reader with meaningful results. Higher sensitivity values signal that the effort of weighting leads to more informative composites. Otherwise, high robustness does not mean that weighting was not worthwhile. Weighting per se can be beneficial for more acceptable and viable decisional processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debayan Mondal ◽  
Prudveesh Kantamraju ◽  
Susmita Jha ◽  
Gadge Sushant Sundarrao ◽  
Arpan Bhowmik ◽  
...  

AbstractIndigenous folk rice cultivars often possess remarkable but unrevealed potential in terms of nutritional attributes and biotic stress tolerance. The unique cooking qualities and blissful aroma of many of these landraces make it an attractive low-cost alternative to high priced Basmati rice. Sub-Himalayan Terai region is bestowed with great agrobiodiversity in traditional heirloom rice cultivars. In the present study, ninety-nine folk rice cultivars from these regions were collected, purified and characterized for morphological and yield traits. Based on traditional importance and presence of aroma, thirty-five genotypes were selected and analyzed for genetic diversity using micro-satellite marker system. The genotypes were found to be genetically distinct and of high nutritive value. The resistant starch content, amylose content, glycemic index and antioxidant potential of these genotypes represented wide variability and ‘Kataribhog’, ‘Sadanunia’, ‘Chakhao’ etc. were identified as promising genotypes in terms of different nutritional attributes. These cultivars were screened further for resistance against blast disease in field trials and cultivars like ‘Sadanunia’, ‘T4M-3-5’, ‘Chakhao Sampark’ were found to be highly resistant to the blast disease whereas ‘Kalonunia’, ‘Gobindabhog’, ‘Konkanijoha’ were found to be highly susceptible. Principal Component analysis divided the genotypes in distinct groups for nutritional potential and blast tolerance. The resistant and susceptible genotypes were screened for the presence of the blast resistant pi genes and association analysis was performed with disease tolerance. Finally, a logistic model based on phenotypic traits for prediction of the blast susceptibility of the genotypes is proposed with more than 80% accuracy.


2020 ◽  
Vol 124 (1277) ◽  
pp. 1099-1113
Author(s):  
L. Mariga ◽  
I. Silva Tiburcio ◽  
C.A. Martins ◽  
A.N. Almeida Prado ◽  
C. Nascimento

ABSTRACTThe increasing use of unmanned aerial vehicles in areas such as rescue, mapping, and transportation have made it necessary to study more accurate techniques for calculating flight time estimates. Such calculations require knowing the battery discharge profile. Simplified flight time calculation methods provide data with uncertainties as they are based solely on manufacturer datasheet information. This study presents a setup to measure the battery discharge curve using a LabVIEW interface with a low-cost acquisition system. The acquired data passes through a nonlinear optimisation algorithm to find the battery coefficients, which enables the more precise estimation of its range and endurance. The great advantage of this model is that it makes it possible to predict how the battery will discharge at different rates using just one experimental curve. The methodology was applied to three different batteries and the model was validated with different discharge rates in a controlled environment, which resulted in endurance lower than 3.0% for most conditions and voltage estimation error lower than 3.0% in operational voltage. The work also presented a methodology for estimating cruise time based on the current used during each flight stage.


2013 ◽  
Vol 291-294 ◽  
pp. 1562-1567
Author(s):  
Ji Min Hu ◽  
Jian Long Gu ◽  
Chang Cui Hu ◽  
Hai Feng Wang

According to indicators’ information repetition and subjectivity of the indicators’ weight set during the variable fuzzy comprehensive evaluation, Principal Component analysis can help solve the weight of the relative indicators and reduce comprehensive evaluation dimensions of the variable fussy comprehensive evaluation. This paper has made a comprehensive evaluation of the status quo of Yunnan’s low carbon economy development(2005-2009), which turns out to be more practical compared with the mere variable fussy theory analysis, thus, principal component-variable fuzzy evaluation is a kind of feasible way to analyze the regional low carbon development status.


2021 ◽  
Vol 11 (6) ◽  
pp. 2809
Author(s):  
Dongmin Zhang ◽  
Qiang Song ◽  
Guanfeng Wang ◽  
Chonghao Liu

This article proposes a novel longitudinal vehicle speed estimator for snowy roads in extreme conditions (four-wheel slip) based on low-cost wheel speed encoders and a longitudinal acceleration sensor. The tire rotation factor, η, is introduced to reduce the deviation between the rotation tire radius and the manufacturer’s marked tire radius. The Local Vehicle Speed Estimator is defined to eliminate longitudinal vehicle speed estimation error. It improves the tire slip accuracy of four-wheel slip, even with a high slip rate. The final vehicle speed is estimated using two fuzzy control strategies that use vehicle speed estimates from speed encoders and a longitudinal acceleration sensor. Experimental and simulation results confirm the algorithm’s validity for estimating longitudinal vehicle speed for four-wheel slip in snowy road conditions.


Author(s):  
Hervé Cardot ◽  
Pascal Sarda

This article presents a selected bibliography on functional linear regression (FLR) and highlights the key contributions from both applied and theoretical points of view. It first defines FLR in the case of a scalar response and shows how its modelization can also be extended to the case of a functional response. It then considers two kinds of estimation procedures for this slope parameter: projection-based estimators in which regularization is performed through dimension reduction, such as functional principal component regression, and penalized least squares estimators that take into account a penalized least squares minimization problem. The article proceeds by discussing the main asymptotic properties separating results on mean square prediction error and results on L2 estimation error. It also describes some related models, including generalized functional linear models and FLR on quantiles, and concludes with a complementary bibliography and some open problems.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 342 ◽  
Author(s):  
Patricia Arroyo ◽  
Jesús Lozano ◽  
José Suárez

This study addresses the development of a wireless gas sensor network with low cost, small size, and low consumption nodes for environmental applications and air quality detection. Throughout the article, the evolution of the design and development of the system is presented, describing four designed prototypes. The final proposed prototype node has the capacity to connect up to four metal oxide (MOX) gas sensors, and has high autonomy thanks to the use of solar panels, as well as having an indirect sampling system and a small size. ZigBee protocol is used to transmit data wirelessly to a self-developed data cloud. The discrimination capacity of the device was checked with the volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX). An improvement of the system was achieved to obtain optimal success rates in the classification stage with the final prototype. Data processing was carried out using techniques of pattern recognition and artificial intelligence, such as radial basis networks and principal component analysis (PCA).


Sign in / Sign up

Export Citation Format

Share Document