scholarly journals An Autophagy-Related Gene-Based Prognostic Risk Signature for Hepatocellular Carcinoma: Construction and Validation

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rui Feng ◽  
Jian Li ◽  
Weiling Xuan ◽  
Hanbo Liu ◽  
Dexin Cheng ◽  
...  

Background. Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer. Treatment is dramatically difficult due to its high complexity and poor prognosis. Due to the disclosed dual functions of autophagy in cancer development, understanding autophagy-related genes devotes into novel biomarkers for HCC. Methods. Differential expression of genes in normal and tumor groups was analyzed to acquire autophagy-related genes in HCC. These genes were subjected to GO and KEGG pathway analyses. Genes were then screened by univariate regression analysis. The screened genes were subjected to multivariate Cox regression analysis to build a prognostic model. The model was validated by the ICGC validation set. Results. To sum up, 42 differential genes relevant to autophagy were screened by differential expression analysis. Enrichment analysis showed that they were mainly enriched in pathways including regulation of autophagy and cell apoptosis. Genes were screened by univariate analysis and multivariate Cox regression analysis to build a prognostic model. The model constituted 6 feature genes: EIF2S1, BIRC5, SQSTM1, ATG7, HDAC1, and FKBP1A. Validation confirmed the accuracy and independence of this model in predicting the HCC patient’s prognosis. Conclusion. A total of 6 feature genes were identified to build a prognostic risk model. This model is conducive to investigating interplay between autophagy-related genes and HCC prognosis.

2021 ◽  
Author(s):  
Rui Feng ◽  
Jian Li ◽  
Weiling Xuan ◽  
Hanbo Liu ◽  
Dexin Cheng ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer and the main cause of cancer mortality. Its high complexity and dismal prognosis bring dramatic difficulty to treatment. Due to the disclosed dual functions of autophagy in cancer development, understanding autophagy-related genes devotes into seeking novel biomarkers for HCC. Methods Differential expression of genes in normal and tumor groups was analyzed to acquire autophagy-related genes in HCC. GO and KEGG pathway analyses were conducted on these genes. Genes were then screened by univariate regression analysis. The screened genes were subjected to multivariate Cox regression analysis to build a prognostic model. The model was validated by ICGC validation set. Results Altogether, 42 autophagy-related differential genes were screened by differential expression analysis. Enrichment analysis showed that they were mainly enriched in pathways including regulation of autophagy and cell apoptosis. Genes were screened by univariate analysis and multivariate Cox regression analysis to build a prognostic model. The model was constituted by 6 feature genes: EIF2S1, BIRC5, SQSTM1, ATG7, HDAC1, FKBP1A. Validation confirmed the accuracy and independence of this model in predicting HCC patient’s prognosis. Conclusion A total of 6 feature genes were identified to build a prognostic risk model. This model is conducive to investigating interplay between autophagy-related genes and HCC prognosis.


Author(s):  
Yongmei Wang ◽  
Guimin Zhang ◽  
Ruixian Wang

Background: This study aims to explore the prognostic values of CT83 and CT83-related genes in lung adenocarcinoma (LUAD). Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients. Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83-related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the Risk Score, which was also differentially expressed between the LUAD samples with high and low-Risk Scores, suggesting that the poor prognosis of LUAD patients with high-Risk Score might be due to the immunosuppressive microenvironments. Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.


2021 ◽  
Vol 20 ◽  
pp. 153303382110049
Author(s):  
Bei Li ◽  
Long Fang ◽  
Baolong Wang ◽  
Zengkun Yang ◽  
Tingbao Zhao

Osteosarcoma often occurs in children and adolescents and causes poor prognosis. The role of RNA-binding proteins (RBPs) in malignant tumors has been elucidated in recent years. Our study aims to identify key RBPs in osteosarcoma that could be prognostic factors and treatment targets. GSE33382 dataset was downloaded from Gene Expression Omnibus (GEO) database. RBPs extraction and differential expression analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to explore the biological function of differential expression RBPs. Moreover, we constructed Protein-protein interaction (PPI) network and obtained key modules. Key RBPs were identified by univariate Cox regression analysis and multiple stepwise Cox regression analysis combined with the clinical information from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Risk score model was generated and validated by GSE16091 dataset. A total of 38 differential expression RBPs was identified. Go and KEGG results indicated these RBPs were significantly involved in ribosome biogenesis and mRNA surveillance pathway. COX regression analysis showed DDX24, DDX21, WARS and IGF2BP2 could be prognostic factors in osteosarcoma. Spearman’s correlation analysis suggested that WARS might be important in osteosarcoma immune infiltration. In conclusion, DDX24, DDX21, WARS and IGF2BP2 might play key role in osteosarcoma, which could be therapuetic targets for osteosarcoma treatment.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2020 ◽  
Author(s):  
Xiaohong - Liu ◽  
Qian - Xu ◽  
Zi-Jing - Li ◽  
Bin - Xiong

Abstract BackgroundMetabolic reprogramming is an important hallmark in the development of malignancies. Numerous metabolic genes have been demonstrated to participate in the progression of hepatocellular carcinoma (HCC). However, the prognostic significance of the metabolic genes in HCC remains elusive. MethodsWe downloaded the gene expression profiles and clinical information from the GEO, TCGA and ICGC databases. The differently expressed metabolic genes were identified by using Limma R package. Univariate Cox regression analysis and LASSO (Least absolute shrinkage and selection operator) Cox regression analysis were utilized to uncover the prognostic significance of metabolic genes. A metabolism-related prognostic model was constructed in TCGA cohort and validated in ICGC cohort. Furthermore, we constructed a nomogram to improve the accuracy of the prognostic model by using the multivariate Cox regression analysis.ResultsThe high-risk score predicted poor prognosis for HCC patients in the TCGA cohort, as confirmed in the ICGC cohort (P < 0.001). And in the multivariate Cox regression analysis, we observed that risk score could act as an independent prognostic factor for the TCGA cohort (HR (hazard ratio) 3.635, 95% CI (confidence interval)2.382-5.549) and the ICGC cohort (HR1.905, 95%CI 1.328-2.731). In addition, we constructed a nomogram for clinical use, which suggested a better prognostic model than risk score.ConclusionsOur study identified several metabolic genes with important prognostic value for HCC. These metabolic genes can influence the progression of HCC by regulating tumor biology and can also provide metabolic targets for the precise treatment of HCC.


2020 ◽  
Author(s):  
Xiang Zhou ◽  
Keying Zhang ◽  
Fa Yang ◽  
Chao Xu ◽  
Jianhua Jiao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a disease with higher morbidity, mortality, and poor prognosis in the whole world. Understanding the crosslink between HCC and the immune system is essential for people to uncover a few potential and valuable therapeutic strategies. This study aimed to reveal the correlation between HCC and immune-related genes and establish a clinical evaluation model. Methods: We had analyzed the clinical information consisted of 373 HCC and 49 normal samples from the cancer genome atlas (TCGA). The differentially expressed genes (DEGs) were selected by the Wilcoxon test and the immune-related differentially expressed genes (IRDEGs) in DEGs were identified by matching DEGs with immune-related genes downloaded from the ImmPort database. Furthermore, the univariate Cox regression analysis and multivariate Cox regression analysis were performed to construct a prognostic risk model. Then, twenty-two types of tumor immune-infiltrating cells (TIICs) were downloaded from Tumor Immune Estimation Resource (TIMER) and were used to construct the correlational graphs between the TIICs and risk score by the CIBERSORT. Subsequently, the transcription factors (TFs) were gained in the Cistrome website and the differentially expressed TFs (DETFs) were achieved. Finally, the KEGG pathway analysis and GO analysis were performed to further understand the molecular mechanisms between DETFs and PDIRGs.Results: In our study, 5839 DEGs, 326 IRDEGs, and 31 prognosis-related IRDEGs (PIRDEGs) were identified. And 8 optimal PIRDEGs were employed to construct a prognostic risk model by multivariate Cox regression analysis. The correlation between risk genes and clinical characterizations and TIICs has verified that the prognostic model was effective in predicting the prognosis of HCC patients. Finally, several important immune-related pathways and molecular functions of the eight PIRDEGs were significantly enriched and there was a distinct association between the risk IRDEGs and TFs. Conclusion: The prognostic risk model showed a more valuable predicting role for HCC patients, and produced many novel therapeutic targets and strategies for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhipeng Zhu ◽  
Mengyu Song ◽  
Wenhao Li ◽  
Mengying Li ◽  
Sihan Chen ◽  
...  

Hepatocellular carcinoma is a common malignant tumor with poor prognosis, poor treatment effect, and lack of effective biomarkers. In this study, bioinformatics analysis of immune-related genes of hepatocellular carcinoma was used to construct a multi-gene combined marker that can predict the prognosis of patients. The RNA expression data of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database, and immune-related genes were obtained from the IMMPORT database. Differential analysis was performed by Wilcox test to obtain differentially expressed genes. Univariate Cox regression analysis, lasso regression analysis and multivariate Cox regression analysis were performed to establish a prognostic model of immune genes, a total of 5 genes (HDAC1, BIRC5, SPP1, STC2, NR6A1) were identified to construct the models. The expression levels of 5 genes in HCC tissues were significantly different from those in paracancerous tissues. The Kaplan-Meier survival curve showed that the risk score calculated according to the prognostic model was significantly related to the overall survival (OS) of HCC. The receiver operating characteristic (ROC) curve confirmed that the prognostic model had high accuracy. Independent prognostic analysis was performed to prove that the risk value can be used as an independent prognostic factor. Then, the gene expression data of hepatocellular carcinoma in the ICGC database was used as a validation data set for the verification of the above steps. In addition, we used the CIBERSORT software and TIMER database to conduct immune infiltration research, and the results showed that the five genes of the model and the risk score have a certain correlation with the content of immune cells. Moreover, through Gene Set Enrichment Analysis (GSEA) and the construction of protein interaction networks, we found that the p53-mediated signal transduction pathway is a potentially important signal pathway for hepatocellular carcinoma and is positively regulated by certain genes in the prognostic model. In conclusion, this study provides potential targets for predicting the prognosis and treatment of hepatocellular carcinoma patients, and also provides new ideas about the correlation between immune genes and potential pathways of hepatocellular carcinoma.


Author(s):  
Dawei Zhou ◽  
Junchen Wan ◽  
Jiang Luo ◽  
Yuhao Tao

Background: Liver cancer is one of the most common diseases in the world. At present, the mechanism of autophagy genes in liver cancer is not very clear. Therefore, it is meaningful to study the role and prognostic value of autophagy genes in liver cancer. Objective: The purpose of this study is to conduct a bioinformatics analysis of autophagy genes related to primary liver cancer to establish a prognostic model of primary liver cancer based on autophagy genes. Results: Through difference analysis, 31 differential autophagy genes were screened out and then analyzed by GO and KEGG analysis. At the same time, we built a PPI network. To optimize the evaluation of the prognosis of liver cancer patients, we integrated multiple autophagy genes to establish a prognostic model. By using univariate cox regression analysis, 15 autophagy genes related to prognosis were screened out. Then we included these 15 genes into the Least Absolute Shrinkage and Selection Operator (LASSO), and performed multi-factor cox regression analysis on the 9 selected genes to construct a prognostic model. The risk score of each patient was calculated based on 4 genes(BIRC5, HSP8, SQSTM1, and TMEM74) which participated in the establishing of the model, then the patients were divided into high-risk groups and low-risk groups. In the multivariate cox regression analysis, the risk score was the independent prognostic factors (HR=1.872, 95%CI=1.544-2.196, P<0.001). Survival analysis showed that the survival time of the low-risk group was significantly longer than that of the high-risk group. Combining clinical characteristics and autophagy genes, we constructed a nomogram for predicting prognosis. The external dataset GSE14520 proved that the nomogram has a good prediction for individual patients with primary liver cancer. Conclusion: This study provided potential autophagy-related markers for liver cancer patients to predict their prognosis and revealed part of the molecular mechanism of liver cancer autophagy. At the same time, the certain gene pathways and protein pathways related to autophagy may provide some inspiration for the development of anticancer drugs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tong Wang ◽  
Weiwei Wen ◽  
Hongfei Liu ◽  
Jun Zhang ◽  
Xiaofeng Zhang ◽  
...  

Background: Stomach adenocarcinoma (STAD) is a significant global health problem. It is urgent to identify reliable predictors and establish a potential prognostic model.Methods: RNA-sequencing expression data of patients with STAD were downloaded from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Gene expression profiling and survival analysis were performed to investigate differentially expressed genes (DEGs) with significant clinical prognosis value. Overall survival (OS) analysis and univariable and multivariable Cox regression analyses were performed to establish the prognostic model. Protein–protein interaction (PPI) network, functional enrichment analysis, and differential expression investigation were also performed to further explore the potential mechanism of the prognostic genes in STAD. Finally, nomogram establishment was undertaken by performing multivariate Cox regression analysis, and calibration plots were generated to validate the nomogram.Results: A total of 229 overlapping DEGs were identified. Following Kaplan–Meier survival analysis and univariate and multivariate Cox regression analysis, 11 genes significantly associated with prognosis were screened and five of these genes, including COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, were used to establish the risk model. The results showed that patients with high-risk scores have a poor prognosis, compared with those with low-risk scores (p = 0.0025 for the training dataset and p = 0.045 for the validation dataset). Subsequently, a nomogram (including TNM stage, age, gender, histologic grade, and risk score) was created. In addition, differential expression and immunohistochemistry stain of the five core genes in STAD and normal tissues were verified.Conclusion: We develop a prognostic-related model based on five core genes, which may serve as an independent risk factor for survival prediction in patients with STAD.


Author(s):  
Qianqian Wu ◽  
Sutian Jiang ◽  
Tong Cheng ◽  
Manyu Xu ◽  
Bing Lu

Hepatocellular carcinoma (HCC) is the second most lethal malignant tumor because of its significant heterogeneity and complicated molecular pathogenesis. Novel prognostic biomarkers are urgently needed because no effective and reliable prognostic biomarkers currently exist for HCC patients. Increasing evidence has revealed that pyroptosis plays a role in the occurrence and progression of malignant tumors. However, the relationship between pyroptosis-related genes (PRGs) and HCC patient prognosis remains unclear. In this study, 57 PRGs were obtained from previous studies and GeneCards. The gene expression profiles and clinical data of HCC patients were acquired from public data portals. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to establish a risk model using TCGA data. Additionally, the risk model was further validated in an independent ICGC dataset. Our results showed that 39 PRGs were significantly differentially expressed between tumor and normal liver tissues in the TCGA cohort. Functional analysis confirmed that these PRGs were enriched in pyroptosis-related pathways. According to univariate Cox regression analysis, 14 differentially expressed PRGs were correlated with the prognosis of HCC patients in the TCGA cohort. A risk model integrating two PRGs was constructed to classify the patients into different risk groups. Poor overall survival was observed in the high-risk group of both TCGA (p &lt; 0.001) and ICGC (p &lt; 0.001) patients. Receiver operating characteristic curves demonstrated the accuracy of the model. Furthermore, the risk score was confirmed as an independent prognostic indicator via multivariate Cox regression analysis (TCGA cohort: HR = 3.346, p &lt; 0.001; ICGC cohort: HR = 3.699, p &lt; 0.001). Moreover, the single-sample gene set enrichment analysis revealed different immune statuses between high- and low-risk groups. In conclusion, our new pyroptosis-related risk model has potential application in predicting the prognosis of HCC patients.


Sign in / Sign up

Export Citation Format

Share Document